skip to main content

Title: Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation
The global development of hydropower dams has rapidly expanded over the last several decades and has spread to historically non-impounded systems such as the Amazon River’s main low land tributaries in Brazil. Despite the recognized significance of reservoirs to the global methane (CH 4 ) emission, the processes controlling this emission remain poorly understood, especially in Tropical reservoirs. Here we evaluate CH 4 dynamics in the main channel and downstream of the Santo Antônio hydroelectric reservoir, a large tropical run-of-the-river (ROR) reservoir in Amazonia. This study is intended to give a snapshot of the CH 4 dynamics during the falling water season at the initial stage after the start of operations. Our results show substantial and higher CH 4 production in reservoirs’ littoral sediment than in the naturally flooded areas downstream of the dam. Despite the large production in the reservoir or naturally flooded areas, high CH 4 oxidation in the main channel keep the concentration and fluxes of CH 4 in the main channel low. Similar CH 4 concentrations in the reservoir and downstream close to the dam suggest negligible degassing at the dam, but stable isotopic evidence indicates the presence of a less oxidized pool of CH 4 more » after the dam. ROR reservoirs are designed to disturb the natural river flow dynamics less than traditional reservoirs. If enough mixing and oxygenation remain throughout the reservoir’s water column, naturally high CH 4 oxidation rates can also remain and limit the diffusive CH 4 emissions from the main channel. Nevertheless, it is important to highlight that our results focused on emissions in the deep and oxygenated main channel. High emissions, mainly through ebullition, may occur in the vast and shallow areas represented by bays and tributaries. However, detailed assessments are still required to understand the impacts of this reservoir on the annual emissions of CH 4 . « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Environmental Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Belo Monte hydropower complex located in the Xingu River is the largestrun-of-the-river (ROR) hydroelectric system in the world and has one of thehighest energy production capacities among dams. Its construction receivedsignificant media attention due to its potential social and environmentalimpacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) inthe Xingu's main branch and the Intermediate Reservoir (IR), an artificialreservoir fed by waters diverted from the Xingu River with longer waterresidence time compared to XR. We aimed to evaluate spatiotemporalvariations in CO2 partial pressure (pCO2) and CO2 fluxes(FCO2) during the first 2 years after the Xingu River impoundmentunder the hypothesis that each reservoir has contrasting FCO2 andpCO2 as vegetation clearing reduces flooded area emissions. Time ofthe year had a significant influence on pCO2 with the highest averagevalues observed during the high-water season. Spatial heterogeneitythroughout the entire study area was observed for pCO2 during both low-and high-water seasons. FCO2, on the other hand, only showed significantspatial heterogeneity during the high-water period. FCO2 (0.90±0.47 and 1.08±0.62 µmol m2 d−1 for XR and IR,respectively) and pCO2 (1647±698 and 1676±323 µatm for XR and IR, respectively) measured during the high-water season wereon the same order of magnitude as previous observations in other Amazonianclearwater rivers unaffectedmore »by impoundment during the same season. Incontrast, during the low-water season FCO2 (0.69±0.28 and 7.32±4.07 µmol m2 d−1 for XR and IR, respectively) andpCO2 (839±646 and 1797±354 µatm for XR and IR,respectively) in IR were an order of magnitude higher than literatureFCO2 observations in clearwater rivers with naturally flowing waters.When CO2 emissions are compared between reservoirs, IR emissions were90 % higher than values from the XR during low-water season, reinforcingthe clear influence of reservoir characteristics on CO2 emissions.Based on our observations in the Belo Monte hydropower complex, CO2emissions from ROR reservoirs to the atmosphere are in the range of naturalAmazonian rivers. However, the associated reservoir (IR) may exceed naturalriver emission rates due to the preimpounding vegetation influence. Sincemany reservoirs are still planned to be constructed in the Amazon andthroughout the world, it is critical to evaluate the implications ofreservoir traits on FCO2 over their entire life cycle in order toimprove estimates of CO2 emissions per kilowatt for hydropower projectsplanned for tropical rivers.« less
  2. The current resurgence of hydropower expansion toward tropical areas has been largely based on run-of-the-river (ROR) dams, which are claimed to have lower environmental impacts due to their smaller reservoirs. The Belo Monte dam was built in Eastern Amazonia and holds the largest installed capacity among ROR power plants worldwide. Here, we show that postdamming greenhouse gas (GHG) emissions in the Belo Monte area are up to three times higher than preimpoundment fluxes and equivalent to about 15 to 55 kg CO 2 eq MWh −1 . Since per-area emissions in Amazonian reservoirs are significantly higher than global averages, reducing flooded areas and prioritizing the power density of hydropower plants seem to effectively reduce their carbon footprints. Nevertheless, total GHG emissions are substantial even from this leading-edge ROR power plant. This argues in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type.
  3. Considerable research over the past several decades shows that dams, especially large, flow regulating structures, fragment watersheds and serve to disconnect the normative downstream flux of sediment and nutrients. Less attention has addressed smaller, channel-spanning Run-of-River (RoR) dams that are more commonly distributed throughout watersheds. Taking advantage of a suite of RoR dams in New England (USA), we quantify bedload flux into, through, and beyond the reservoir of five RoR dams and calculate the residence time of gravel clasts within the reservoir. To accomplish this goal, we embedded Radio Frequency Identification (RFID) PIT tags in 791 gravel clasts ranging in size from 15 mm to 81 mm which were subsequently deployed within and upstream of the impounded reservoirs. Among the 503 tracers that were transported from their deployment location, the median cumulative distance traveled was 30 m and the maximum cumulative displacement during the study period 758 m. Of the total tagged rocks placed at all five sites, 276 rocks were displaced over the dam, 204 of which spent time in the reservoir between high discharge events; the rest were transmitted downstream in a single high discharge event. Among those tracers that spent time in the reservoir prior to transmissionmore »over the dam, the average reservoir residence times at the different sites ranged from 19 - 203 days. The median grain size of tracers that were transported over the dam were identical to those that moved during the study period and similar to the median grain size of the channel bed. The distribution of virtual velocities of those tracers that moved was approximately log-normal and very broadly distributed over more than six orders of magnitude. An analysis of variance revealed that the distribution of velocities was partitioned into two statistically similar groups; with slower velocities in the two smaller watersheds (13 km2 – 21 km2) compared to the larger watersheds (89 km2 – 438 km2). We conclude that RoR dams transmit and trap the upstream sediment supply within the same range of physical conditions that produce mobility and trapping in the river’s natural reach-scale morphological units. Since RoR dams are likely not trapping more sediment than is typically sequestered in natural river reaches, these dams do not disconnect the normative downstream flux of sediment nor result in channel morphological disequilibrium downstream of the dam. However, the minimal effect that small, channel spanning RoR dams have on the morphological equilibrium state of a channel does not suggest that RoR dams have no ecological footprint.« less
  4. Abstract. Waters impounded behind dams (i.e., reservoirs) areimportant sources of greenhouses gases (GHGs), especially methane (CH4), butemission estimates are not well constrained due to high spatial and temporalvariability, limitations in monitoring methods to characterize hot spot andhot moment emissions, and the limited number of studies that investigatediurnal, seasonal, and interannual patterns in emissions. In this study, weinvestigate the temporal patterns and biophysical drivers of CH4emissions from Acton Lake, a small eutrophic reservoir, using a combinationof methods: eddy covariance monitoring, continuous warm-season ebullitionmeasurements, spatial emission surveys, and measurements of key drivers ofCH4 production and emission. We used an artificial neural network togap fill the eddy covariance time series and to explore the relativeimportance of biophysical drivers on the interannual timescale. We combinedspatial and temporal monitoring information to estimate annualwhole-reservoir emissions. Acton Lake had cumulative areal emission rates of45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m−2 in 2017 and 2018,respectively, or 109 ± 14 and 123 ± 10 Mg CH4 in 2017 and2018 across the whole 2.4 km2 area of the lake. The main differencebetween years was a period of elevated emissions lasting less than 2 weeksin the spring of 2018, which contributed 17 % of the annual emissions inthe shallow region of the reservoir. The spring burst coincided with aphytoplankton bloom, which was likely drivenmore »by favorable precipitation andtemperature conditions in 2018 compared to 2017. Combining spatiallyextensive measurements with temporally continuous monitoring enabled us toquantify aspects of the spatial and temporal variability in CH4emission. We found that the relationships between CH4 emissions andsediment temperature depended on location within the reservoir, and we observed a clearspatiotemporal offset in maximum CH4 emissions as a function ofreservoir depth. These findings suggest a strong spatial pattern in CH4biogeochemistry within this relatively small (2.4 km2) reservoir. Inaddressing the need for a better understanding of GHG emissions fromreservoirs, there is a trade-off in intensive measurements of one water bodyvs. short-term and/or spatially limited measurements in many waterbodies. The insights from multi-year, continuous, spatially extensivestudies like this one can be used to inform both the study design andemission upscaling from spatially or temporally limited results,specifically the importance of trophic status and intra-reservoirvariability in assumptions about upscaling CH4 emissions.« less
  5. Inland waters are the largest natural source of methane (CH 4 ) to the atmosphere, yet the contribution from small streams to this flux is not clearly defined. To fully understand CH 4 emissions from streams and rivers, we must consider the relative importance of CH 4 emission pathways, the prominence of microbially-mediated production and oxidation of CH 4 , and the isotopic signature of emitted CH 4 . Here, we construct a complete CH 4 emission budgets for four lowland headwater streams by quantifying diffusive CH 4 emissions and comparing them to previously published rates of ebullitive emissions. We also examine the isotopic composition of CH 4 along with the sediment microbial community to investigate production and oxidation across the streams. We find that all four streams are supersaturated with respect to CH 4 with diffusive emissions accounting for approximately 78–100% of total CH 4 emissions. Isotopic and microbial data suggest CH 4 oxidation is prevalent across the streams, depleting approximately half of the dissolved CH 4 pool before emission. We propose a conceptual model of CH 4 production, oxidation, and emission from small streams, where the dominance of diffusive emissions is greater compared to other aquatic ecosystems, andmore »the impact of CH 4 oxidation is observable in the emitted isotopic values. As a result, we suggest the CH 4 emitted from small streams is isotopically heavy compared to lentic ecosystems. Our results further demonstrate streams are important components of the global CH 4 cycle yet may be characterized by a unique pattern of cycling and emission that differentiate them from other aquatic ecosystems.« less