skip to main content

This content will become publicly available on May 19, 2023

Title: High resolution voltammetric and field-effect transistor readout of carbon fiber microelectrode biosensors
Rapid and sensitive pH measurements with increased spatiotemporal resolution are imperative to probe neurochemical signals and illuminate brain function. We interfaced carbon fiber microelectrode (CFME) sensors with both fast scan cyclic voltammetry (FSCV) and field-effect transistor (FET) transducers for dynamic pH measurements. The electrochemical oxidation and reduction of functional groups on the surface of CFMEs affect their response over a physiologically relevant pH range. When measured with FET transducers, the sensitivity of the measurements over the measured pH range was found to be (101 ± 18) mV, which exceeded the Nernstian value of 59 mV by approximately 70%. Finally, we validated the functionality of CFMEs as pH sensors with FSCV ex vivo in rat brain coronal slices with exogenously applied solutions of varying pH values indicating that potential in vivo study is feasible.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sensors & Diagnostics
Page Range or eLocation-ID:
460 to 464
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and oxytocin peptide. Applying the MSW, decreased surface fouling and enabled codetection with other monoamines. As oxytocin contains tyrosine, the MSW was also used to detect oxytocin. The sensitivity of oxytocin detection was found to be 3.99 ± 0.49 nAμM−1, (n = 5). Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied oxytocin on rat brain slices. These studies may serve as novel assays for oxytocin detection in a fast, sub-second timescale with possible implications forin vivomeasurements and further understanding of the physiological role of oxytocin.

  2. Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry. Carbon nanotubes are ideal for neurotransmitter detection because they have higher aspect ratios enabling monoamine adsorption and lower limits of detection, faster electron transfer kinetics, and a resistance to surface fouling. Several methods to modify CFMEs with CNTs have resulted in increases in sensitivity, but have also increased noise and led to irreproducible results. In this study, we utilize commercially available CNT-yarns to make microelectrodes as enhanced neurotransmitter sensors for neurotransmitters such as serotonin. CNT-yarn microelectrodes have significantly higher sensitivities (peak oxidative currents of the cyclic voltammograms) than CFMEs and faster electron transfer kinetics as measured by peak separation (ΔEP) values. Moreover, both serotonin and dopamine are adsorption controlled to the surface of the electrode as measured by scan rate and concentration experiments. CNT yarn microelectrodes also resisted surface fouling of serotonin onto the surface of the electrode over thirty minutes andmore »had a wave application frequency independent response to sensitivity at the surface of the electrode.« less
  3. Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.

  4. Neurotransmitters are involved in functions related to signaling, stress response, and pathological disorder development, and thus, their real-time monitoring at the site of production is important for observing the changes related to these disorders. Here, we demonstrate the first time-dependent quantification of dopamine in the brains of live zebrafish embryos using electrochemically pretreated carbon fiber microelectrodes (CFMEs) utilizing differential pulse voltammetry as the measurement technique. The pretreatment of the CFMEs in 0.1 M NaOH held at a potential of +1.0 V for 600 s improves the sensitivity toward dopamine and allows for reliable measurements in low ionic strength media. We demonstrate the measurement of extracellular dopamine concentrations in the zebrafish brain during late embryogenesis. The extracellular dopamine concentration in the tectum of zebrafish varies between 200 and 400 nM. The conventional pharmacological manipulation of neurotransmitter levels in the brain demonstrates the selective detection of dopamine at the implantation site. Exposure to the dopamine transporter inhibitor nomifensine induces an increase in extracellular dopamine from 201.9 (±34.9) nM to 352.2 (±20.0) nM, while exposure to the norepinephrine transporter inhibitor desipramine does not lead to a significant modulation of the measured signal. Furthermore, we report the quantitative assessment of the catecholamine stress responsemore »of embryos to tricaine, an anesthetic frequently used in zebrafish assays. Exposure to tricaine induces a short-lived increase in brain dopamine from 198.6 (±15.7) nM to a maximum of 278.8 (±14.0) nM. Thus, in vivo electrochemistry can detect real-time changes in zebrafish neurochemical physiology resulting from drug exposure.« less
  5. A systematic analysis was used to understand electrical drift occurring in field-effect transistor (FET) dissolved-analyte sensors by investigating its dependence on electrode surface-solution combinations in a remote-gate (RG) FET configuration. Water at pH 7 and neat acetonitrile, having different dipoles and polarizabilities, were applied to the RG surface of indium tin oxide (ITO), SiO2, hexamethyldisilazane-modified SiO2, polystyrene, poly(styrene-co-acrylic acid), poly(3-hexylthiophene-2,5-diyl) (P3HT), and poly [3-(3-carboxypropyl)thiophene-2,5-diyl] (PT-COOH). We discovered that in some cases a slow reorientation of dipoles at the interface induced by gate electric fields caused severe drift and hysteresis because of induced interface potential changes. Conductive and charged P3HT and PT-COOH increased electrochemical stability by promoting fast surface equilibrations. We also demonstrated pH sensitivity of P3HT (17 mV/pH) as an indication of proton doping. PT-COOH showed further enhanced pH sensitivity (30 mV/pH). This combination of electrochemical stability and pH response in PT-COOH are proposed as advantageous for polymer-based biosensors.