skip to main content


Title: Fluvial Carbon Dynamics across the Land to Ocean Continuum of Great Tropical Rivers: the Amazon and Congo.
Many river systems of the world are super-saturated in dissolved CO2 (pCO2) relative to equilibrium with the atmosphere. Here we compare the coupled organic matter and pCO2 dynamics of the world’s two largest and most organic-rich river systems. The emerging data sets for the Congo River, joint with Amazon River data, enable us to begin to think more generally about the overall functioning of the world’s two largest river basins. Discharge is the primary control on POC and DOC export in both the Amazon and Congo Rivers. TSS yield from the Amazon is twentyfold greater per unit area than the Congo. However, despite low TSS concentrations, the Congo has a POC content approximately five times higher than the Amazon. The organic-rich character of both watersheds is reflected in the DOC export, with the Amazon exporting ~11% and the Congo ~5% of the global land to ocean flux (but care should be taken when describing estimates of TSS and carbon to the ocean since processing and sequestration in tidal and coastal areas can significantly alter TSS and carbon delivery, and last measuring stations are typically hundreds of kilometers from the sea). pCO2 in the Amazon mainstem range from 1,000 to 10,000 ppm, with floodplain lakes ranging from 20 to 20,000 ppm. Concentrations in the Congo are lower, with high values of 5,000 ppm. The elevated level of pCO2 even as far as the mouth of such major rivers as the Amazon and Congo, up to thousands of kilometers from CO2-rich small streams, poses a most interesting question: What set of processes maintains such high levels? The answer is presumably some combination of instream metabolism of organic matter of terrestrial and floodplain origin, and/or injection of very high pCO2 water from local floodplains or tributaries."  more » « less
Award ID(s):
1754317
NSF-PAR ID:
10328425
Author(s) / Creator(s):
; ; ;
Editor(s):
R.M. Tshimanga; G.D. Moukandi N’kaya; D. Alsdorf
Date Published:
Journal Name:
Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future, Geophysical Monograph 269, First Edition
Page Range / eLocation ID:
393-412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dissolved organic carbon (DOC) flux from rivers in the pan‐Arctic watershed represents an important connection between major terrestrial carbon stocks and the Arctic Ocean. Previous estimates of Arctic carbon flux and dissolved organic matter (DOM) seasonal dynamics have relied predominantly on measurements from the six major Arctic rivers, yet these may not be representative of northern high‐latitude constrained smaller watersheds. Here, we evaluate DOC concentration and DOM composition in the Onega River, a small Arctic watershed, using optical measurements and ultrahigh resolution mass spectrometry. Compared to the six largest Arctic rivers, DOC, absorbance ata350, and indicators of terrestrial DOM (e.g., specific UV absorbance at 254 nm, modified aromaticity index, relative abundance of condensed aromatics and polyphenolics) were elevated in the Onega throughout the year. Seasonality was also generally muted in comparison to the major Arctic rivers with relatively elevated DOC and terrestrial markers in both spring and fall seasons. The Onega exhibits a strong relationship betweena350and DOC, and its organic‐rich nature is apparent in its high DOC yield (4.85 g m2yr−1), and higher chromophoric DOM per unit DOC than the six largest Arctic rivers. As DOC yield from the Onega may be more representative of smaller northern high‐latitude rivers, we derived a new pan‐Arctic DOC flux scaling estimate which is over 50% higher than previous estimates scaled solely from the six major Arctic rivers. These observations suggest that smaller northern high‐latitude rivers may be underrepresented in Arctic carbon flux models and highlights uncertainty around constraining the export of DOC to the Arctic Ocean.

     
    more » « less
  2. Abstract

    The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape‐level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial‐to‐aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%–77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra‐high‐resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land‐use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular‐plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere.

     
    more » « less
  3. Concentration-discharge (C-Q) relationships of total suspended solids (TSS), total dissolved solids (TDS), particulate organic carbon (POC), and dissolved organic carbon (DOC) were investigated in the tributaries and main-stems of two mountainous river systems with distinct watershed characteristics (Eel and Umpqua rivers) in Northern California and central Oregon (USA). Power-law (C = a × Q b) fits to the data showed strong transport-limited behavior (b > 1) by TSS and POC, moderate transport limitation of DOC (b > 0.3) and chemostatic behavior (b < 0) by TDS in most streams. These contrasts led to significant compositional differences at varying discharge levels, with particle-bound constituents becoming increasingly important (relative abundances of 50% to >90%) at high-flow conditions. Organic carbon contents of TSS displayed marked decreases with discharge whereas they increased in TDS during high-flow conditions. Daily and cumulative material fluxes for different coastal streams were calculated using the C-Q relationships and showed that the delivery of transport-limited constituents, such as TSS and POC (and DOC to a lesser degree), was closely tied to high-discharge events and occurred primarily during the winter season. The coherence between winter fluxes and high wave-southerly wind conditions along the coast highlights how seasonal and inter-annual differences in fluvial discharge patterns affect the fate of land-derived materials delivered to coastal regions. 
    more » « less
  4. Abstract

    Pyrogenic organic residues from wildfires and anthropogenic combustion are ubiquitous in the environment and susceptible to leaching from soils into rivers, where they are known as dissolved black carbon (DBC). Here we quantified and isotopically characterized DBC from the second largest river on Earth, the Congo, using 12 samples collected across three annual hydrographs from 2010 to 2012. We find that the Congo River exports an average of 803 ± 84 Gg‐C as DBC per year, comprising 7.5% of the river's average annual dissolved organic carbon (DOC) flux (10.7 ± 1.2 Tg‐C yr−1). Concentrations of DBC were strongly correlated with discharge and DOC concentration, indicating transport limitation for DBC flux from the Congo River Basin. Stable carbon isotopic signatures of DBC revealed a seasonal shift in pyrogenic source from forest dominant to an increasing contribution from savannah biomass, which derives from the North‐South bimodal hydrologic regime within the basin. Our results also indicate that black carbon produced within the Congo Basin is exported by the river on relatively short time scales and that total DBC export will increase with climate change predictions for the central African region.

     
    more » « less
  5. Abstract

    Large rivers are the main arteries for transportation of carbon to the ocean; yet, how hydrology and anthropogenic disturbances may change the composition and export of dissolved organic matter along large river continuums is largely unknown. The Yangtze River has a watershed area of 1.80 × 106 km2. It originates from the Qinghai‐Tibet Plateau and flows 6300 km eastward through the center of China. We collected samples (n= 271) along the river continuum and analyzed weekly samples at the most downstream situated gauging station in 2017–2018 and gathered long‐term (2006–2018) water quality data. We found higher gross domestic product, population density, and urban and agricultural land use downstream than upstream of the Three Gorges Dam, coinciding with higher dissolved organic carbon (DOC), UV absorption (a254), specific ultraviolet absorbance (SUVA254), parallel factor analysis‐derived C1–C5, aliphatic compounds, and lowera250:a365and spectral slope (S275–295). Chemical oxygen demand, humic‐like C1–C2 and C6, and protein‐like C4 and C7 increased, while dissolved oxygen and ammonium decreased with increasing discharge at most of the sites studied, including the intensively monitored downstream site. The annual DOC fluxes were ca. 1.5–1.8 Tg yr−1, and 12–18% was biodegradable in a 28‐d bio‐incubation. Our results highlight that urbanization and stormwater periods enhanced the export of both terrestrial organic‐rich substances and household effluents from nearshore residential areas. Our study emphasizes the continued need to protect the Yangtze River watershed as increased organic carbon loading or altered composition and bio‐lability may change the ecosystem function and carbon cycling.

     
    more » « less