skip to main content


Title: Seasonal and spatial variability of CO2 in aquatic environments of the central lowland Amazon basin.
Different sources and processes contribute to pCO2 and CO2 exchange with the atmosphere in the rivers and floodplains of the Amazon basin. We measured or estimated pCO2, CO2 fluxes with the atmosphere, planktonic community respiration (PCR), and environmental and landscape variables along the Negro and Amazon-Solimões rivers during different periods of the fluvial hydrological cycle. Values of pCO2 ranged from 307 to 7,527 μatm, while CO2 fluxes ranged from -9.3 to 1,128 mmol m-2 d-1 in the Amazon-Solimões basin. In the Negro basin, pCO2 values ranged from 648 to 6,526 μatm, and CO2 fluxes from 35 to 1,025 mmol m-2 d-1. In a general linear model including data from Negro and Amazon-Solimões basins, seasonal and spatial variation in flooded vegetated habitat area, dissolved oxygen, depth and water temperature explained 85% of surface pCO2 variation. Levels of pCO2 varied with inundation extent, with higher pCO2 values occurring in periods with greater water depth and inundation area, and lower dissolved oxygen concentrations and water temperatures. In a separate analysis for the Amazon-Solimões river and floodplains, ecosystem type (lotic or lentic), hydrological period, water temperature, dissolved oxygen, depth and dissolved phosphorus explained 83% of pCO2 variation. Our results demonstrate the influence of alluvial floodplains and seasonal variations in their limnological characteristics on the pCO2 levels in river channels of the lowland Amazon.  more » « less
Award ID(s):
1753856
NSF-PAR ID:
10091419
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biogeochemistry
ISSN:
0168-2563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets. 
    more » « less
  2. R.M. Tshimanga ; G.D. Moukandi N’kaya ; D. Alsdorf (Ed.)
    Many river systems of the world are super-saturated in dissolved CO2 (pCO2) relative to equilibrium with the atmosphere. Here we compare the coupled organic matter and pCO2 dynamics of the world’s two largest and most organic-rich river systems. The emerging data sets for the Congo River, joint with Amazon River data, enable us to begin to think more generally about the overall functioning of the world’s two largest river basins. Discharge is the primary control on POC and DOC export in both the Amazon and Congo Rivers. TSS yield from the Amazon is twentyfold greater per unit area than the Congo. However, despite low TSS concentrations, the Congo has a POC content approximately five times higher than the Amazon. The organic-rich character of both watersheds is reflected in the DOC export, with the Amazon exporting ~11% and the Congo ~5% of the global land to ocean flux (but care should be taken when describing estimates of TSS and carbon to the ocean since processing and sequestration in tidal and coastal areas can significantly alter TSS and carbon delivery, and last measuring stations are typically hundreds of kilometers from the sea). pCO2 in the Amazon mainstem range from 1,000 to 10,000 ppm, with floodplain lakes ranging from 20 to 20,000 ppm. Concentrations in the Congo are lower, with high values of 5,000 ppm. The elevated level of pCO2 even as far as the mouth of such major rivers as the Amazon and Congo, up to thousands of kilometers from CO2-rich small streams, poses a most interesting question: What set of processes maintains such high levels? The answer is presumably some combination of instream metabolism of organic matter of terrestrial and floodplain origin, and/or injection of very high pCO2 water from local floodplains or tributaries." 
    more » « less
  3. Extensive floodplains and numerous lakes in the Amazon basin are well suited to examine the role of floodable lands within the context of the sources and processing of carbon within inland waters. We measured diel, seasonal and inter-annual variations of carbon dioxide concentrations and related environmental variables in open water and flooded vegetation and estimated the extension of these habitats using remote sensing in a representative central Amazon floodplain lake, Lake Janauacá. Depth-averaged values of CO2 in the open water of the lake, 157± 91 µM (mean ± SD), were less than those in an embayment near aquatic vegetation, 285±116 µM, and were variable over 24-h periods at both sites. Within floating herbaceous plant mats, mean concentration (without one outlier) was 275±77 µM and in flooded forests mean concentration was 217±78 µM. Variability in CO2 concentrations in open water resulted from changes in the extent of inundation and exchange with vegetated habitats. The best statistical model, including CO2 in aquatic plant mats, Secchi depth, rate of change in water level and chlorophyll concentrations, explained around 90% of the variability in CO2 concentration. Three-dimensional hydrodynamic modeling demonstrated that diel differences in water temperature between plant mats and open water and basin-scale motions caused lateral exchanges of CO2 linking vegetated habitats to open water. Our findings extend understanding of CO2 in tropical lakes and floodplains with measurements and models that emphasize the importance of flooded forests and aquatic herbaceous plants fringing floodplain lakes as sources of carbon dioxide to the open waters. 
    more » « less
  4. Abstract. The Belo Monte hydropower complex located in the Xingu River is the largestrun-of-the-river (ROR) hydroelectric system in the world and has one of thehighest energy production capacities among dams. Its construction receivedsignificant media attention due to its potential social and environmentalimpacts. It is composed of two ROR reservoirs: the Xingu Reservoir (XR) inthe Xingu's main branch and the Intermediate Reservoir (IR), an artificialreservoir fed by waters diverted from the Xingu River with longer waterresidence time compared to XR. We aimed to evaluate spatiotemporalvariations in CO2 partial pressure (pCO2) and CO2 fluxes(FCO2) during the first 2 years after the Xingu River impoundmentunder the hypothesis that each reservoir has contrasting FCO2 andpCO2 as vegetation clearing reduces flooded area emissions. Time ofthe year had a significant influence on pCO2 with the highest averagevalues observed during the high-water season. Spatial heterogeneitythroughout the entire study area was observed for pCO2 during both low-and high-water seasons. FCO2, on the other hand, only showed significantspatial heterogeneity during the high-water period. FCO2 (0.90±0.47 and 1.08±0.62 µmol m2 d−1 for XR and IR,respectively) and pCO2 (1647±698 and 1676±323 µatm for XR and IR, respectively) measured during the high-water season wereon the same order of magnitude as previous observations in other Amazonianclearwater rivers unaffected by impoundment during the same season. Incontrast, during the low-water season FCO2 (0.69±0.28 and 7.32±4.07 µmol m2 d−1 for XR and IR, respectively) andpCO2 (839±646 and 1797±354 µatm for XR and IR,respectively) in IR were an order of magnitude higher than literatureFCO2 observations in clearwater rivers with naturally flowing waters.When CO2 emissions are compared between reservoirs, IR emissions were90 % higher than values from the XR during low-water season, reinforcingthe clear influence of reservoir characteristics on CO2 emissions.Based on our observations in the Belo Monte hydropower complex, CO2emissions from ROR reservoirs to the atmosphere are in the range of naturalAmazonian rivers. However, the associated reservoir (IR) may exceed naturalriver emission rates due to the preimpounding vegetation influence. Sincemany reservoirs are still planned to be constructed in the Amazon andthroughout the world, it is critical to evaluate the implications ofreservoir traits on FCO2 over their entire life cycle in order toimprove estimates of CO2 emissions per kilowatt for hydropower projectsplanned for tropical rivers. 
    more » « less
  5. Abstract

    Tropical floodplains are an important source of methane (CH4) to the atmosphere, and ebullitive fluxes are likely to be important. We report direct measurements of CH4ebullition in common habitats on the Amazon floodplain over two years based on floating chambers that allowed detection of bubbles, and submerged bubble traps. Ebullition was highly variable in space and time. Of the 840 floating chamber measurements (equivalent to 8,690 min of 10‐min deployments), 22% captured bubbles. Ebullitive CH4fluxes, measured using bubble traps deployed for a total of approximately 230 days, ranged from 0 to 109 mmol CH4m−2 d−1, with a mean of 4.4 mmol CH4m−2 d−1. During falling water, a hydroacoustic echosounder detected bubbles in 24% of the 70‐m segments over 34 km. Ebullitive flux increased as the water level fell faster during falling water periods. In flooded forests, highest ebullitive fluxes occurred during falling water, while in open water and herbaceous plant habitats, higher ebullitive fluxes were measured during low water periods. The contribution of diffusive plus ebullitive CH4flux represented by ebullition varied from 1% (high and rising water in open water of the lake) to 93% (falling water in flooded forests) based on bubble traps. Combining ebullitive and diffusive fluxes among habitats in relation to variations in water depth and areal coverage of aquatic habitats provides the basis for improved floodplain‐wide estimates of CH4evasion.

     
    more » « less