skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Steady-State Planning in Expected Reward Multichain MDPs
The planning domain has experienced increased interest in the formal synthesis of decision-making policies. This formal synthesis typically entails finding a policy which satisfies formal specifications in the form of some well-defined logic. While many such logics have been proposed with varying degrees of expressiveness and complexity in their capacity to capture desirable agent behavior, their value is limited when deriving decision-making policies which satisfy certain types of asymptotic behavior in general system models. In particular, we are interested in specifying constraints on the steady-state behavior of an agent, which captures the proportion of time an agent spends in each state as it interacts for an indefinite period of time with its environment. This is sometimes called the average or expected behavior of the agent and the associated planning problem is faced with significant challenges unless strong restrictions are imposed on the underlying model in terms of the connectivity of its graph structure. In this paper, we explore this steady-state planning problem that consists of deriving a decision-making policy for an agent such that constraints on its steady-state behavior are satisfied. A linear programming solution for the general case of multichain Markov Decision Processes (MDPs) is proposed and we prove that optimal solutions to the proposed programs yield stationary policies with rigorous guarantees of behavior.  more » « less
Award ID(s):
2106339 1552497
PAR ID:
10328434
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
72
ISSN:
1076-9757
Page Range / eLocation ID:
1029 to 1082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In hierarchical planning for Markov decision processes (MDPs), temporal abstraction allows planning with macro-actions that take place at different time scale in the form of sequential composition. In this paper, we propose a novel approach to compositional reasoning and hierarchical planning for MDPs under co-safe temporal logic constraints. In addition to sequential composition, we introduce a composition of policies based on generalized logic composition: Given sub-policies for sub-tasks and a new task expressed as logic compositions of subtasks, a semi-optimal policy, which is optimal in planning with only sub-policies, can be obtained by simply composing sub-polices. Thus, a synthesis algorithm is developed to compute optimal policies efficiently by planning with primitive actions, policies for sub-tasks, and the compositions of sub-policies, for maximizing the probability of satisfying constraints specified in the fragment of co-safe temporal logic. We demonstrate the correctness and efficiency of the proposed method in stochastic planning examples with a single agent and multiple task specifications. 
    more » « less
  2. We study the problem of analyzing the effects of inconsistencies in perception, intent prediction, and decision making among interacting agents. When accounting for these effects, planning is akin to synthesizing policies in uncertain and potentially partially-observable environments. We consider the case where each agent, in an effort to avoid a difficult planning problem, does not consider the inconsistencies with other agents when computing its policy. In particular, each agent assumes that other agents compute their policies in the same way as it does, i.e., with the same objective and based on the same system model. While finding policies on the composed system model, which accounts for the agent interactions, scales exponentially, we efficiently provide quantifiable performance metrics in the form of deltas in the probability of satisfying a given specification. We showcase our approach using two realistic autonomous vehicle case-studies and implement it in an autonomous vehicle simulator. 
    more » « less
  3. We pose and study the problem of planning in Markov decision processes (MDPs), subject to participation constraints as studied in mechanism design. In this problem, a planner must work with a self-interested agent on a given MDP. Each action in the MDP provides an immediate reward to the planner and a (possibly different) reward to the agent. The agent has no control in choosing the actions, but has the option to end the entire process at any time. The goal of the planner is to find a policy that maximizes her cumulative reward, taking into consideration the agent's ability to terminate. We give a fully polynomial-time approximation scheme for this problem. En route, we present polynomial-time algorithms for computing (exact) optimal policies for important special cases of this problem, including when the time horizon is constant, or when the MDP exhibits a "definitive decisions" property. We illustrate our algorithms with two different game-theoretic applications: the problem of assigning rides in ride-sharing and the problem of designing screening policies. Our results imply efficient algorithms for computing (approximately) optimal policies in both applications. 
    more » « less
  4. We study the problem of identifying the best action in a sequential decision-making setting when the reward distributions of the arms exhibit a non-trivial dependence structure, which is governed by the underlying causal model of the domain where the agent is deployed. In this setting, playing an arm corresponds to intervening on a set of variables and setting them to specific values. In this paper, we show that whenever the underlying causal model is not taken into account during the decision-making process, the standard strategies of simultaneously intervening on all variables or on all the subsets of the variables may, in general, lead to suboptimal policies, regardless of the number of interventions performed by the agent in the environment. We formally acknowledge this phenomenon and investigate structural properties implied by the underlying causal model, which lead to a complete characterization of the relationships between the arms’ distributions. We leverage this characterization to build a new algorithm that takes as input a causal structure and finds a minimal, sound, and complete set of qualified arms that an agent should play to maximize its expected reward. We empirically demonstrate that the new strategy learns an optimal policy and leads to orders of magnitude faster convergence rates when compared with its causal-insensitive counterparts. 
    more » « less
  5. Abstract

    Reinforcement learning is a general technique that allows an agent to learn an optimal policy and interact with an environment in sequential decision-making problems. The goodness of a policy is measured by its value function starting from some initial state. The focus of this paper was to construct confidence intervals (CIs) for a policy’s value in infinite horizon settings where the number of decision points diverges to infinity. We propose to model the action-value state function (Q-function) associated with a policy based on series/sieve method to derive its confidence interval. When the target policy depends on the observed data as well, we propose a SequentiAl Value Evaluation (SAVE) method to recursively update the estimated policy and its value estimator. As long as either the number of trajectories or the number of decision points diverges to infinity, we show that the proposed CI achieves nominal coverage even in cases where the optimal policy is not unique. Simulation studies are conducted to back up our theoretical findings. We apply the proposed method to a dataset from mobile health studies and find that reinforcement learning algorithms could help improve patient’s health status. A Python implementation of the proposed procedure is available at https://github.com/shengzhang37/SAVE.

     
    more » « less