skip to main content


Title: Formulation and Efficacy of Catalase-Loaded Nanoparticles for the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy
Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury. View Full-Text  more » « less
Award ID(s):
1703438
NSF-PAR ID:
10328481
Author(s) / Creator(s):
Date Published:
Journal Name:
Pharmaceutics
Volume:
13
Issue:
8
ISSN:
1999-4923
Page Range / eLocation ID:
1131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Co‐delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)‐block‐poly(lactic‐co‐glycolic acid) (PEG–PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA‐containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG‐CNA‐PLGA are synthesized and then formulated into polymer nanoparticles from oil‐in‐water emulsions. The CNA‐containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG‐PLGA alone shows minimal DNA loading, and non‐complementary DNA strands do not get encapsulated within the PEG‐CNA‐PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co‐loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA‐containing particles as carriers for chemotherapy agents and gene silencers.

     
    more » « less
  2. Abstract

    Polylactic‐co‐glycolic acid (PLGA)‐basedpolymers are synthetic materials that are prominent in drug delivery. PLGA homopolymer is biodegradable, biocompatible and is often polymerized to polyethylene glycol (PEG) to form a block copolymer used to form core‐shell nanoparticles. PEG is known for reducing blood clearance and opsonization, in addition to imparting “stealth” properties to various drugs and biomaterials. Current formulation methodologies for PLGA–PEG copolymer nanoparticles can be tuned to control key parameters for improved therapeutic delivery; however, molecular‐level understanding of copolymer‐solvent interactions during nanoparticle formulation is lacking. Therefore, three different PLGA–PEG/solvent pairs are examined, in comparison to their homopolymer constituents, to better understand copolymerization effects and its impact on nanoparticle formulation. Results show that at room temperature PLGA–PEG oligomers in dimethyl sulfoxide are the most rigid in good solvent conditions (Flory exponent >0.5) and have the largest end‐to‐end relaxation times when compared to acetone and water. PEG has a Flory exponent of ~0.5 in both water and acetone, showing that the molecular dynamic model that is employed can reproduce its amphiphilic nature in solution. Knowledge of PLGA–PEG structure and dynamics can be used in the design of novel biomedical technologies that improve drug efficacy and reduce cost of treatment.

     
    more » « less
  3. Abstract

    Vascular‐targeted drug delivery remains an attractive platform for therapeutic and diagnostic interventions in human diseases. This work focuses on the development of a poly‐lactic‐co‐glycolic‐acid (PLGA)‐based multistage delivery system (MDS). MDS consists of two stages: a micron‐sized PLGA outer shell and encapsulated drug‐loaded PLGA nanoparticles. Nanoparticles with average diameters of 76, 119, and 193 nm are successfully encapsulated into 3–6 µm MDS. Sustained in vitro release of nanoparticles from MDS is observed for up to 7 days. Both MDS and nanoparticles arebiocompatible with human endothelial cells. Sialyl‐Lewis‐A (sLeA) is successfully immobilized on the MDS and nanoparticle surfaces to enable specific targeting of inflamed endothelium. Functionalized MDS demonstrates a 2.7‐fold improvement in endothelial binding compared to PLGA nanoparticles from human blood laminar flow. Overall, the presented results demonstrate successful development and characterization of MDS and suggest that MDS can serve as an effective drug carrier, which can enhance the margination of nanoparticles to the targeted vascular wall.

     
    more » « less
  4. Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4–24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24–48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates. 
    more » « less
  5. null (Ed.)
    Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example there is considerable interest in the biomedical applications of one of the physiologically-based inorganic metal oxide nanoparticle, zinc oxide (ZnO). Indeed zinc oxide (ZnO) NP are now recognized as a nanoscale chemotherapeutic or anticancer nanoparticle (ANP) and several recent reports suggest ZnO NP and/or its complexes with drug and RNA induce a potent antitumor response in immuno-competent mouse models. A variety of cell culture studies have shown that ZnO NP can induce cytokines such as IFN-γ, TNF-α, IL-2, and IL-12 which are known to regulate the tumor microenvironment. Much less work has been done on magnesium oxide (MgO), cobalt oxide (Co3O4), or nickel oxide (NiO); however, despite the fact that these physiologically-based metal oxide NP are reported to functionally load and assemble RNA and protein onto their surface and may thus also be of potential interest as nanovaccine platform. Here we initially compared in vitro immunogenicity of ZnO and Co3O4 NP and their effects on cancer-associated or tolerogenic cytokines. Based on these data we moved ZnO NP forward to testing in the ex vivo splenocyte assay relative to MgO and NiO NP and these data showed significant difference for flow cytometry sorted population for ZnO-NP, relative to NiO and MgO. These data suggesting both molecular and cellular immunogenic activity, a double-stranded anticancer RNA (ACR), polyinosinic:poly cytidylic acid (poly I:C) known to bind ZnO NP; when ZnO-poly I:C was injected into B16F10-BALB/C tumor significantly induced, IL-2 and IL-12 as shown by Cohen’s d test. LL37 is an anticancer peptide (ACP) currently in clinical trials as an intratumoral immuno-therapeutic agent against metastatic melanoma. LL37 is known to bind poly I:C where it is thought to compete for receptor binding on the surface of some immune cells, metastatic melanoma and lung cells. Molecular dynamic simulations revealed association of LL37 onto ZnO NP confirmed by gel shift assay. Thus using the well-characterized model human lung cancer model cell line (BEAS-2B), poly I:C RNA, LL37 peptide, or LL37-poly I:C complexes were loaded onto ZnO NP and delivered to BEAS-2B lung cells, and the effect on the main cancer regulating cytokine, IL-6 determined by ELISA. Surprisingly ZnO-LL37, but not ZnO-poly I:C or the more novel tricomplex (ZnO-LL37-poly I:C) significantly suppressed IL-6 by >98–99%. These data support the further evaluation of physiological metal oxide compositions, so-called physiometacomposite (PMC) materials and their formulation with anticancer peptide (ACP) and/or anticancer RNA (ACR) as a potential new class of immuno-therapeutic against melanoma and potentially lung carcinoma or other cancers. 
    more » « less