skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Agreement of rebound and applanation tonometry intraocular pressure measurements during atmospheric pressure change
This study investigated the agreement of intraocular pressure measurements using rebound tonometry and applanation tonometry in response to atmospheric changes in a hyperbaric chamber. Twelve eyes of 12 healthy subjects were included in this prospective, comparative, single-masked study. Intraocular pressure measurements were performed by rebound tonometry followed by applanation tonometry in a multiplace hyperbaric chamber at 1 Bar, followed by 2, 3 and 4 Bar during compression and again at 3 and 2 Bar during decompression. Mean differences between rebound and applanation intraocular pressure measurements were 1.6, 1.7, and 2.1 mmHg at 2, 3, and 4 Bar respectively during compression and 2.6 and 2.2 mmHg at 3 and 2 Bar during decompression. Lower limits of agreement ranged from -3.7 to -5.9 mmHg and upper limits ranged from -0.3 to 1.9 mmHg. Multivariate analysis showed that the differences between rebound and applanation intraocular pressure measurements were independent of atmospheric pressure changes (p = 0.79). Intraocular pressure measured by rebound tonometry shows a systematic difference compared to intraocular measured by applanation tonometry, but this difference is not influenced by changes of atmospheric pressure up to 4 Bar in a hyperbaric chamber. Agreement in magnitude of change between devices suggests rebound tonometry is viable for assessing intraocular pressure during atmospheric changes. Future studies should be designed in consideration of expected differences in IOP values provided by the two devices.  more » « less
Award ID(s):
2021192
PAR ID:
10328482
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Grzybowski, Andrzej
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
10
ISSN:
1932-6203
Page Range / eLocation ID:
e0259143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Costagliola, Ciro (Ed.)
    Purpose. This study investigated how a conscious change in ocular accommodation affects intraocular pressure (IOP) and ocular biometrics in healthy adult volunteers of different ages. Methods. Thirty-five healthy volunteers without ocular disease or past ocular surgery, and with refractive error between −3.50 and +2.50 diopters, were stratified into 20, 40, and 60 year old (y.o.) age groups. Baseline measurements of central cornea thickness, anterior chamber depth, anterior chamber angle, cornea diameter, pupil size, and ciliary muscle thickness were made by autorefraction and optical coherence tomography (OCT), while IOP was measured by pneumotonometry. Each subject’s right eye focused on a target 40 cm away. Three different tests were performed in random order: (1) 10 minutes of nonaccommodation (gazing at the target through lenses that allowed clear vision without accommodating), (2) 10 minutes of accommodation (addition of a minus 3 diopter lens), and (3) 10 minutes of alternating between accommodation and nonaccommodation (1-minute intervals). IOP was measured immediately after each test. A 20-minute rest period was provided between tests. Data from 31 subjects were included in the study. ANOVA and paired t-tests were used for statistical analyses. Results. Following alternating accommodation, IOP decreased by 0.7 mmHg in the right eye when all age groups were combined ( p  = 0.029). Accommodation or nonaccommodation alone did not decrease IOP. Compared to the 20 y.o. group, the 60 y.o. group had a thicker ciliary muscle within 75 μm of the scleral spur, a thinner ciliary muscle at 125–300 μm from the scleral spur, narrower anterior chamber angles, shallower anterior chambers, and smaller pupils during accommodation and nonaccommodation ( p ’s < 0.01). Conclusion. Alternating accommodation, but not constant accommodation, significantly decreased IOP. This effect was not lost with aging despite physical changes to the aging eye. A greater accommodative workload and/or longer test period may improve the effect. 
    more » « less
  2. null (Ed.)
    A spark plug calorimeter is introduced for quantifying the thermal energy delivered to unreactive gas surrounding the spark gap during spark ignition. Unlike other calorimeters, which measure the small pressure rise of the gas above the relatively high gauge pressure or relative to an internal reference, the present calorimeter measured the differential rise in pressure relative to the initial pressure in the calorimeter chamber. By using a large portion of the dynamic range of the chip-based pressure sensor, a high signal to noise ratio is possible; this can be advantageous, particularly for high initial pressures. Using this calorimeter, a parametric study was carried out, measuring the thermal energy deposition in the gas and the electrical-to-thermal energy conversion efficiency over a larger range of initial pressures than has been carried out previously (1–24 bar absolute at 298 K). The spark plug and inductive ignition circuit used gave arc-type rather than glow-type discharges. A standard resistor-type automotive spark plug was tested. The effects of spark gap distance (0.3–1.5 mm) and ignition dwell time (2–6 ms) were studied for an inductive-type ignition system. It was found that energy deposition to the gas (nitrogen) and the electrical-to-thermal energy conversion efficiency increased strongly with increasing gas pressure and spark gap distance. For the same ignition hardware and operating conditions, the thermal energy delivered to the gap varied from less than 1 mJ at 1 atm pressure and a gap distance of 0.3 mm to over 25 mJ at a pressure of 24 bar and a gap distance of 1.5 mm. For gas densities that might be representative of those in an engine at the time of ignition, the electrical-to-thermal energy conversion efficiencies ranged from approximately 3% at low pressures (4 bar) and small gap (0.3 mm) to as much as 40% at the highest pressure of 24 bar and with a gap of 1.5 mm. 
    more » « less
  3. Growing evidence suggests that intracranial pressure (ICP) plays an important role in the pathophysiology of glaucoma, especially in normal-tension glaucoma (NTG) patients. Controversial results exist about ICP’s relationship to visual field (VF) changes. With the aim to assess the relationship between ICP and VF zones in NTG patients, 80 NTG patients (age 59.5 (11.6) years) with early-stage glaucoma were included in this prospective study. Intraocular pressure (IOP) (Goldmann), visual perimetry (Humphrey) and non-invasive ICP (via a two-depth Transcranial Doppler, Vittamed UAB, Lithuania) were evaluated. Translaminar pressure difference (TPD) was calculated according to the formula TPD = IOP − ICP. The VFs of each patient were divided into five zones: nasal, temporal, peripheral, central, and paracentral. The average pattern deviation (PD) scores were calculated in each zone. The level of significance p < 0.05 was considered significant. NTG patients had a mean ICP of 8.5 (2.4) mmHg. Higher TPD was related with lower mean deviation (MD) (p = 0.01) and higher pattern standard deviation (PSD) (p = 0.01). ICP was significantly associated with the lowest averaged PD scores in the nasal VF zone (p < 0.001). There were no significant correlations between ICP and other VF zones with the most negative mean PD value. (p > 0.05). Further studies are needed to analyze the involvement of ICP in NTG management. 
    more » « less
  4. Small unmanned aircraft systems (UAS) are increasingly being used for meteorology and atmospheric monitoring. The ease of deployment makes distributed sensing of parameters such as barometric pressure, temperature, and relative humidity in the lower atmospheric boundary layer feasible. However, constraints on payload size and weight, and to a lesser extent power, limit the types of sensors that can be deployed. The objective of this work was to develop a miniature pressure-temperature-humidity (PTH) probe for UAS integration. A set of eight PTH probes were fabricated and calibrated/validated using an environmental chamber. An automated routine was developed to facilitate calibration and validation from a large set of temperature and relative humidity setpoints. Linear regression was used to apply temperature and relative humidity calibrations. Barometric pressure was calibrated using a 1-point method consisting of an offset. The resulting PTH probes were less than 4 g in mass and consumed less than 1 mA when operated from a 5 VDC source. Measurements were transmitted as a formatted string in ASCII format at 1 Hz over a 3.3 V TTL UART. Prior to calibration, measurements between individual PTH probes were significantly different. After calibration, no significant differences in temperature measurements across all PTH probes were observed, and the level of significance between PTH probes was reduced. Actual differences between calibrated PTH probes were likely to be negligible for most UAS-based applications, regardless of significance. RMSE across all calibrated PTH probes for the pressure, temperature, and relative humidity was less than 31 Pa, 0.13 °C, and 0.8% RH, respectively. The resulting calibrated PTH probes will improve the ability to quantify small variations in ambient conditions during coordinated multi-UAS flights. 
    more » « less
  5. Materials in metastable states, such as amorphous ice and supercooled condensed matter, often exhibit exotic phenomena. To date, achieving metastability is usually accomplished by rapid quenching through a thermodynamic path function, namely, heating−cooling cycles. However, heat can be detrimental to organic-containing materials because it can induce degradation. Alternatively, the application of pressure can be used to achieve metastable states that are inaccessible via heating−cooling cycles. Here we report metastable states of 2D organic−inorganic hybrid perovskites reached through structural amorphization under compression followed by recrystallization via decompression. Remarkably, such pressure-derived metastable states in 2D hybrid perovskites exhibit enduring bandgap narrowing by as much as 8.2% with stability under ambient conditions. The achieved metastable states in 2D hybrid perovskites via compression−decompression cycles offer an alternative pathway toward manipulating the properties of these “soft” materials. 
    more » « less