skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 2021192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose

    To review retinal vein occlusion (RVO) and its relationship with retinal oxygen saturation via automated retinal oximetry in eyes with RVO.


    A literature review was performed in PubMed and Medline until October 2021 utilizing specific keywords and cross‐matched reference lists.


    This review found RVO to be associated with risk factors including age, hypertension, cardiovascular and metabolic conditions, male gender, and glaucoma. These may be attributed to a breakdown of regulatory processes in the retina. Retinal venous oxygen saturation (SvO2) and arteriovenous difference in eyes with central RVO have been found to be reduced and elevated, respectively. The literature indicates variable and contradictory findings in regard to branch RVO and retinal oxygenation. Additionally, ischaemic eyes have been found to have elevated retinal arterial oxygen saturation; however, the literature reports variable results regarding SvO2levels. Medications have been suggested to increase SvO2in RVO eyes, which may represent an important mechanism for disease management. Ranibizumab is currently the most studied drug for retinal oxygenation in RVO and has been suggested to increase SvO2in RVO eyes. In comparison, dexamethasone was found to decrease SvO2.


    The current literature on retinal oxygenation in ischaemic subtypes of RVO and in drug therapies is minimal, and further work is required to expand upon our understanding of how ischaemia and drugs influence retinal oxygenation and clinical outcomes.

    more » « less
  2. In this article, we propose a theoretical model leveraging the analogy between fluid and electric variables to investigate the relation among aqueous humor (AH) circulation and drainage and intraocular pressure (IOP), the principal established risk factor of severe neuropathologies of the optic nerve such as glaucoma. IOP is the steady-state result of the balance among AH secretion (AHs), circulation (AHc), and drainage (AHd). AHs are modeled as a given volumetric flow rate electrically corresponding to an input current source. AHc is modeled by the series of two linear hydraulic conductances (HCs) representing the posterior and anterior chambers. AHd is modeled by the parallel of three HCs: a linear HC for the conventional adaptive route (ConvAR), a nonlinear HC for the hydraulic component of the unconventional adaptive route (UncAR), and a nonlinear HC for the drug-dependent component of the UncAR. The proposed model is implemented in a computational virtual laboratory to study the value attained by the IOP under physiological and pathological conditions. Simulation results (i) confirm the conjecture that the UncAR acts as a relief valve under pathological conditions, (ii) indicate that the drug-dependent AR is the major opponent to IOP increase in the case of elevated trabecular meshwork resistance, and (iii) support the use of the model as a quantitative tool to complement in vivo studies and help design and optimize medications for ocular diseases. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available March 1, 2024
  4. This study investigated the heterogeneity of ocular hemodynamic biomarkers in early open angle glaucoma (OAG) patients and healthy controls of African (AD) and European descent (ED). Sixty OAG patients (38 ED, 22 AD) and 65 healthy controls (47 ED, 18 AD) participated in a prospective, cross-sectional study assessing: intraocular pressure (IOP), blood pressure (BP), ocular perfusion pressure (OPP), visual field (VF) and vascular densities (VD) via optical coherence tomography angiography (OCTA). Comparisons between outcomes were adjusted for age, diabetes status and BP. VF, IOP, BP and OPP were not significantly different between OAG subgroups or controls. Multiple VD biomarkers were significantly lower in OAG patients of ED (p < 0.05) while central macular VD was lower in OAG patients of AD vs. OAG patients of ED (p = 0.024). Macular and parafoveal thickness were significantly lower in AD OAG patients compared to those of ED (p = 0.006–0.049). OAG patients of AD had a negative correlation between IOP and VF index (r = −0.86) while ED patients had a slightly positive relationship (r = 0.26); difference between groups (p < 0.001). Age-adjusted OCTA biomarkers exhibit significant variation in early OAG patients of AD and ED. 
    more » « less
    Free, publicly-accessible full text available February 1, 2024
  5. Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with “successfully” regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases. 
    more » « less
    Free, publicly-accessible full text available February 1, 2024
  6. Growing evidence suggests that intracranial pressure (ICP) plays an important role in the pathophysiology of glaucoma, especially in normal-tension glaucoma (NTG) patients. Controversial results exist about ICP’s relationship to visual field (VF) changes. With the aim to assess the relationship between ICP and VF zones in NTG patients, 80 NTG patients (age 59.5 (11.6) years) with early-stage glaucoma were included in this prospective study. Intraocular pressure (IOP) (Goldmann), visual perimetry (Humphrey) and non-invasive ICP (via a two-depth Transcranial Doppler, Vittamed UAB, Lithuania) were evaluated. Translaminar pressure difference (TPD) was calculated according to the formula TPD = IOP − ICP. The VFs of each patient were divided into five zones: nasal, temporal, peripheral, central, and paracentral. The average pattern deviation (PD) scores were calculated in each zone. The level of significance p < 0.05 was considered significant. NTG patients had a mean ICP of 8.5 (2.4) mmHg. Higher TPD was related with lower mean deviation (MD) (p = 0.01) and higher pattern standard deviation (PSD) (p = 0.01). ICP was significantly associated with the lowest averaged PD scores in the nasal VF zone (p < 0.001). There were no significant correlations between ICP and other VF zones with the most negative mean PD value. (p > 0.05). Further studies are needed to analyze the involvement of ICP in NTG management. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  7. Background: The purpose of this study was to examine the changes in IOP, total macular and RNFL, ganglion cell layer (GCL) thickness, and aqueous humour flare in open angle glaucoma (OAG) patients before and 6 months after cataract surgery. Methods: This was a prospective observational case–control age- and gender-matched study. Groups: 40 subjects in a controlled OAG (OAGc) group, 20 subjects in an uncontrolled OAG (OAGu) group, and 60 control group subjects. Examination: complete ophthalmic evaluation, IOP measurement, anterior and posterior segment Optical Coherence Tomography (OCT), and laser flare photometry before and 6 months postoperatively. Results: Six months postoperatively IOP decreased in all groups. An increase in macular thickness was found postoperatively in all groups. Preoperative aqueous humour flare was higher in the OAGc group than in the control group. After cataract surgery, aqueous humour flare was higher in the control group compared to the preoperative result. Conclusions: Changes in IOP following cataract surgery were strongly negatively correlated with preoperative IOP. An increase in macular thickness was observed 6 months postoperatively in all groups. Aqueous humour flare did not differ in OAGc and OAGu groups pre- and postoperatively but significantly increased in the control group postoperatively. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  8. Free, publicly-accessible full text available December 31, 2023
  9. Free, publicly-accessible full text available December 1, 2023
  10. Recent developments in the use of artificial intelligence in the diagnosis and monitoring of glaucoma are discussed. To set the context and fix terminology, a brief historic overview of artificial intelligence is provided, along with some fundamentals of statistical modeling. Next, recent applications of artificial intelligence techniques in glaucoma diagnosis and the monitoring of glaucoma progression are reviewed, including the classification of visual field images and the detection of glaucomatous change in retinal nerve fiber layer thickness. Current challenges in the direct application of artificial intelligence to further our understating of this disease are also outlined. The article also discusses how the combined use of mathematical modeling and artificial intelligence may help to address these challenges, along with stronger communication between data scientists and clinicians. 
    more » « less
    Free, publicly-accessible full text available November 1, 2023