skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continual Learning for Grounded Instruction Generation by Observing Human Following Behavior
Abstract We study continual learning for natural language instruction generation, by observing human users’ instruction execution. We focus on a collaborative scenario, where the system both acts and delegates tasks to human users using natural language. We compare user execution of generated instructions to the original system intent as an indication to the system’s success communicating its intent. We show how to use this signal to improve the system’s ability to generate instructions via contextual bandit learning. In interaction with real users, our system demonstrates dramatic improvements in its ability to generate language over time.  more » « less
Award ID(s):
1750499
PAR ID:
10328557
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
9
ISSN:
2307-387X
Page Range / eLocation ID:
1303 to 1319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. End-user programmable intelligent agents that can learn new tasks and concepts from users’ explicit instructions are desired. This paper presents our progress on expanding the capabilities of such agents in the areas of task applicability, task generalizability, user intent disambiguation and support for IoT devices through our multi-modal approach of combining programming by demonstration (PBD) with learning from natural language instructions. Our future directions include facilitating better script reuse and sharing, and supporting greater user expressiveness in instructions. 
    more » « less
  2. As robots become pervasive in human environments, it is important to enable users to effectively convey new skills without programming. Most existing work on Interactive Reinforcement Learning focuses on interpreting and incorporating non-expert human feedback to speed up learning; we aim to design a better representation of the learning agent that is able to elicit more natural and effective communication between the human trainer and the learner, while treating human feedback as discrete communication that depends probabilistically on the trainer’s target policy. This work entails a user study where participants train a virtual agent to accomplish tasks by giving reward and/or punishment in a variety of simulated environments. We present results from 60 participants to show how a learner can ground natural language commands and adapt its action execution speed to learn more efficiently from human trainers. The agent’s action execution speed can be successfully modulated to encourage more explicit feedback from a human trainer in areas of the state space where there is high uncertainty. Our results show that our novel adaptive speed agent dominates different fixed speed agents on several measures of performance. Additionally, we investigate the impact of instructions on user performance and user preference in training conditions. 
    more » « less
  3. As robots become pervasive in human environments, it is important to enable users to effectively convey new skills without programming. Most existing work on Interactive Reinforcement Learning focuses on interpreting and incorporating non-expert human feedback to speed up learning; we aim to design a better representation of the learning agent that is able to elicit more natural and effective communication between the human trainer and the learner, while treating human feedback as discrete communication that depends probabilistically on the trainer's target policy. This work entails a user study where participants train a virtual agent to accomplish tasks by giving reward and/or punishment in a variety of simulated environments. We present results from 60 participants to show how a learner can ground natural language commands and adapt its action execution speed to learn more efficiently from human trainers. The agent's action execution speed can be successfully modulated to encourage more explicit feedback from a human trainer in areas of the state space where there is high uncertainty. Our results show that our novel adaptive speed agent dominates different fixed speed agents on several measures of performance. Additionally, we investigate the impact of instructions on user performance and user preference in training conditions. 
    more » « less
  4. null (Ed.)
    This paper presents a novel approach to robot task learning from language-based instructions, which focuses on increasing the complexity of task representations that can be taught through verbal instruction. The major proposed contribution is the development of a framework for directly mapping a complex verbal instruction to an executable task representation, from a single training experience. The method can handle the following types of complexities: 1) instructions that use conjunctions to convey complex execution constraints (such as alternative paths of execution, sequential or nonordering constraints, as well as hierarchical representations) and 2) instructions that use prepositions and multiple adjectives to specify action/object parameters relevant for the task. Specific algorithms have been developed for handling conjunctions, adjectives and prepositions as well as for translating the parsed instructions into parameterized executable task representations. The paper describes validation experiments with a PR2 humanoid robot learning new tasks from verbal instruction, as well as an additional range of utterances that can be parsed into executable controllers by the proposed system. 
    more » « less
  5. Language is compositional; an instruction can ex- press multiple relation constraints to hold among objects in a scene that a robot is tasked to rearrange. Our focus in this work is an instructable scene-rearranging framework that gen- eralizes to longer instructions and to spatial concept compositions never seen at training time. We propose to represent language- instructed spatial concepts with energy functions over relative object arrangements. A language parser maps instructions to corresponding energy functions and an open-vocabulary visual- language model grounds their arguments to relevant objects in the scene. We generate goal scene configurations by gradient descent on the sum of energy functions, one per language predi- cate in the instruction. Local vision-based policies then re-locate objects to the inferred goal locations. We test our model on es- tablished instruction-guided manipulation benchmarks, as well as benchmarks of compositional instructions we introduce. We show our model can execute highly compositional instructions zero-shot in simulation and in the real world. It outperforms language- to-action reactive policies and Large Language Model planners by a large margin, especially for long instructions that involve compositions of multiple spatial concepts. Simulation and real- world robot execution videos, as well as our code and datasets are publicly available on our website: https://ebmplanner.github.io. 
    more » « less