skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking technology-based educational studies in the evolving classroom environment: An interview study with US teachers
Despite the prevalence of conducting classroom studies using educational technology, it is underexplored what practical benefits classroom studies with educational technology offer to teachers and students, and what concerns or challenges they perceive. Our interviews found that teachers view study participation as a meaningful learning opportunity but also shared challenges and concerns, some of which are related to remote learning during the COVID-19 pandemic. We offer strategies that researchers can employ when conducting classroom studies.  more » « less
Award ID(s):
1760922
PAR ID:
10328639
Author(s) / Creator(s):
; ;
Editor(s):
de Vries, E.; Ahn, J.; Hod, Y.
Date Published:
Journal Name:
15th International Conference of the Learning Sciences – ICLS 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies. 
    more » « less
  2. Schmidt, A.; Väänänen, K.; Goyal, T.; Kristensson, P. O.; Peters, A.; Mueller, S.; Williamson, J. R.; Wilson, M. L. (Ed.)
    Enabling students to dynamically transition between individual and collaborative learning activities has great potential to support better learning. We explore how technology can support teachers in orchestrating dynamic transitions during class. Working with five teachers and 199 students over 22 class sessions, we conducted classroom-based prototyping of a co-orchestration technology ecosystem that supports the dynamic pairing of students working with intelligent tutoring systems. Using mixed-methods data analysis, we study the resulting observed classroom dynamics, and how teachers and students perceived and experienced dynamic transitions as supported by our technology. We discover a potential tension between teachers’ and students’ preferred level of control: students prefer more control over the dynamic transitions that teachers are hesitant to grant. Our study reveals design implications and challenges for future human-AI co-orchestration in classroom use, bringing us closer to realizing the vision of highly-personalized smart classrooms that can address the unique needs of each student. 
    more » « less
  3. Advances in educational technology provide teachers and schools with a wealth of information about student performance. A critical direction for educational research is to harvest the available longitudinal data to provide teachers with real-time diagnoses about students’ skill mastery. Cognitive diagnosis models (CDMs) offer educational researchers, policy makers, and practitioners a psychometric framework for designing instructionally relevant assessments and diagnoses about students’ skill profiles. In this article, the authors contribute to the literature on the development of longitudinal CDMs, by proposing a multivariate latent growth curve model to describe student learning trajectories over time. The model offers several advantages. First, the learning trajectory space is high-dimensional and previously developed models may not be applicable to educational studies that have a modest sample size. In contrast, the method offers a lower dimensional approximation and is more applicable for typical educational studies. Second, practitioners and researchers are interested in identifying factors that cause or relate to student skill acquisition. The framework can easily incorporate covariates to assess theoretical questions about factors that promote learning. The authors demonstrate the utility of their approach with an application to a pre- or post-test educational intervention study and show how the longitudinal CDM framework can provide fine-grained assessment of experimental effects. 
    more » « less
  4. NA (Ed.)
    Abstract Music and computer science (CS) have profound historical and structural connections, with programming music offering a promising avenue for engaging children in CS through creative expression. To foster this engagement, our team developed M-Flow, a flow-based music programming platform designed to introduce students to CS via music. Despite extensive existing research in music and CS education, experience reports and empirical studies on K-12 teachers' implementation and its impact on young kids' learning are limited. Therefore, we recruit elementary school teachers and students with no or limited prior programming experience, introducing them to M-Flow and its curriculum through a professional development workshop, a semester's job embedded support, and classroom implementation. We describe the experiences of teachers as they attempt to integrate music and CS, the challenges they face, and the influence on students' attitudes toward learning computing concepts. Specifically, we reflect on our intervention by conducting a sequential mixed-method evaluation. During the qualitative phase, we collected multiple sources of data from three teachers through focus groups and debriefings after a semester of classroom implementation. Thematic analysis of workshop activities, interviews, and debrief videos revealed three themes with seven sub-themes on teachers' integration of flow-based music programming and two themes with five sub-themes on challenges faced by the teachers. In the quantitative phase, we gathered data on attitudes and self-efficacy from 75 students taught by these teachers. Results indicate that the flow-based music programming environment provided an engaging programming experience for students and significantly increased their self-efficacy towards learning programming. 
    more » « less
  5. The COVID-19 global pandemic presented unprecedented challenges to K-16 educators, including the closing of educational agencies and the abrupt transition to online teaching and learning. Educators sought to adapt in-person learning activities to teach in remote and hybrid online settings. This study explores how a partnership between middle and high school teachers in an urban school district and undergraduate STEM mentors of color leveraged digital tools and collaborative pedagogies to teach science, technology, and engineering during a global pandemic. We used a qualitative multi-case study to describe three cases of teachers and undergraduate mentors. We then offer a cross-case analysis to interpret the diverse ways in which partners used technologies, pedagogy, and content to promote equitable outcomes for students, both in remote and hybrid settings. We found that the partnership and technologies led to rigorous and connected learning for students. Teachers and undergraduates carefully scaffolded technology use and content applications while providing ongoing opportunities for students to receive feedback and reflect on their learning. Findings provide implications for community partnerships and digital tools to promote collaborative and culturally relevant STEM learning opportunities in the post-pandemic era. 
    more » « less