skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 12, 2026

Title: Engaging K-12 Students with Flow-Based Music Programming: An Experience Report on Its Impact on Teaching and Learning
Abstract Music and computer science (CS) have profound historical and structural connections, with programming music offering a promising avenue for engaging children in CS through creative expression. To foster this engagement, our team developed M-Flow, a flow-based music programming platform designed to introduce students to CS via music. Despite extensive existing research in music and CS education, experience reports and empirical studies on K-12 teachers' implementation and its impact on young kids' learning are limited. Therefore, we recruit elementary school teachers and students with no or limited prior programming experience, introducing them to M-Flow and its curriculum through a professional development workshop, a semester's job embedded support, and classroom implementation. We describe the experiences of teachers as they attempt to integrate music and CS, the challenges they face, and the influence on students' attitudes toward learning computing concepts. Specifically, we reflect on our intervention by conducting a sequential mixed-method evaluation. During the qualitative phase, we collected multiple sources of data from three teachers through focus groups and debriefings after a semester of classroom implementation. Thematic analysis of workshop activities, interviews, and debrief videos revealed three themes with seven sub-themes on teachers' integration of flow-based music programming and two themes with five sub-themes on challenges faced by the teachers. In the quantitative phase, we gathered data on attitudes and self-efficacy from 75 students taught by these teachers. Results indicate that the flow-based music programming environment provided an engaging programming experience for students and significantly increased their self-efficacy towards learning programming.  more » « less
Award ID(s):
2241714
PAR ID:
10591507
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
ACM
Date Published:
Edition / Version:
NA
Volume:
NA
Issue:
NA
ISSN:
NA
ISBN:
9798400705311
Page Range / eLocation ID:
708 to 714
Subject(s) / Keyword(s):
Flow-Based-Programming Music
Format(s):
Medium: X Size: NA Other: NA
Size(s):
NA
Location:
Pittsburgh PA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Students of all socioeconomic backgrounds love music and express their identity through music. There are strong historical connections between music and computing, and computer-based music has a heavy presence in contemporary popular culture. Thus, programming electronic music can provide the type of authentic learning experience that fosters participation in computer science (CS) by minoritized students. Although important efforts have been made in that direction, they have not reached young children in mainstream public classrooms, particularly in schools serving children from low-income and marginalized backgrounds. Developing a computational tool and educational program that reaches this key demographic holds the potential to greatly increase CS knowledge and participation in the future workforce. For this, our team has created M-flow, a flow-based music programming platform that seeks to be engaging for children from the outset, and that makes it extremely easy for non-specialized teachers to learn and implement CS activities in the classroom. 
    more » « less
  2. PlantGIFT (Plant Genomics Internships for Teachers) is a weeklong teacher professional development workshop designed to enhance the understanding and utilization of plant-based science in secondary science classrooms. The program establishes an active partnership between teachers and plant genetics researchers, aiming to translate cutting-edge research into a classroom learning experience. The major themes covered in PlantGIFT are genetic mutations, microbiomes through endophytes, drought tolerance, and GMOs. Pre- and post-surveys were used to assess program effectiveness, teacher self-efficacy, and increased awareness of plant awareness disparity. The findings indicated that participants found the workshop enjoyable and reported improvements in their content knowledge and confidence regardless of their baseline knowledge of plant genetics. A post-workshop survey indicated that a majority of respondents incorporated workshop materials into their classroom curricula and found it beneficial for their students. This paper shares an outline of workshop activities, lessons learned, and recommendations for practice and future research. 
    more » « less
  3. Abstract: Children can feel disengaged from STEM subjects taught in schools, which are often presented in ways that are not connected to their interests and everyday experiences. The subject of waves is fundamental for understanding a variety of scientific and engineering processes, from gravitation to telecommunications. Furthermore, the subject of waves presents an excellent opportunity to bring to the school activities connected to one of children’s deepest interests: music. For this, we created Listening to Waves, a program that has been developing web applications and curricular activities that allows users to connect with the science of waves by playfully exploring and creating sound and music. Previous work by our team has shown that these types of activities can be powerful for engaging children in science, especially those typically underrepresented in STEM domains. However, a fundamental step for their spreading is that they are also engaging for teachers. To disseminate the program and evaluate its potential to engage teachers, we created a three-day professional development workshop for teachers serving underserved communities. We administered quantitative and qualitative surveys before the workshop, immediately after the workshop, and after the teachers implemented the materials in their classrooms. The surveys indicate that the experience improved teachers’ attitudes toward the subject, including their comfort in teaching the subject, their enjoyment, and their perception of the children’s enjoyment. This effect was particularly relevant for teachers who were not initially engaged, either because of a lack of experience or lack of knowledge. Taken together, these results indicate that activities connecting music and STEM have the potential to spread throughout the formal educational system by engaging teachers, and that they can be instrumental in engaging children in STEM. This research is funded by NSF’s ITEST award “Increasing Students' Interest in STEM through the Science of Music.” 
    more » « less
  4. null (Ed.)
    Prekindergarten to 12th-grade teachers of computer science (CS) face many challenges, including isolation, limited CS professional development resources, and low levels of CS teaching self-efficacy that could be mitigated through communities of practice (CoPs). This study used survey data from 420 PK–12 CS teacher members of a virtual CoP, CS for All Teachers, to examine the needs of these teachers and how CS teaching self-efficacy, community engagement, and sharing behaviors vary by teachers’ instructional experiences and school levels taught. Results show that CS teachers primarily join the CoP to gain high-quality pedagogical, assessment, and instructional resources. The study also found that teachers with more CS teaching experience have higher levels of self-efficacy and are more likely to share resources than teachers with less CS teaching experience. Moreover, teachers who instruct students at higher grade levels (middle and high school) have higher levels of CS teaching self-efficacy than do teachers who instruct lower grade levels (elementary school). These results suggest that CoPs can help CS teachers expand their professional networks, gain more professional development resources, and increase CS teaching self-efficacy by creating personalized experiences that consider teaching experience and grade levels taught when guiding teachers to relevant content. This study lays the foundation for future explorations of how CS education–focused CoPs could support the expansion of CS education in PK–12 schools. 
    more » « less
  5. Despite the intent to advance engineering education with NGSS, teachers across all grades lack self-efficacy in engineering pedagogy. Instructional shifts envisioned by NGSS, especially with inclusion of engineering, require substantial learning by teachers. For rural schools, due to geographic location and smaller collegial networks, there are challenges in providing content-specific professional learning. This project gathered researchers from four states to provide PL aligned to NGSS and delivered remotely to 150 rural teachers. In summer 2023, experts led a five-day workshop which modeled shifts called for by NGSS (e.g., equitable, discourse-rich, phenomena-based) and provided opportunities to experience next-generation teaching and learning. Likert scale surveys were collected before and after the workshop to gauge self-efficacy regarding teaching science and engineering. We found that science-focused PL, with engineering embedded rather than as stand-alone component, afforded growth in self-efficacy for teaching engineering. Pre-workshop surveys showed that teachers had higher self-efficacy towards teaching science than teaching engineering (Wilcoxon signed-rank; p<.001). Positive attitudes toward teaching science were leveraged to provide PL and pre-workshop to post-workshop analysis showed growth in self-efficacy towards teaching engineering (p<.001). Results are important for professional learning around teaching engineering, for professional learning with rural teachers, and for remote access to professional learning. 
    more » « less