skip to main content

Title: Contrasting effect of 1-butanol and 1,4-butanediol on the triggered micellar self-assemblies of C 16 -type cationic surfactants
The self-assembly in aqueous solutions of three quaternary salt-based C 16 -type cationic surfactants with different polar head groups and identical carbon alkyl chain viz. , cetylpyridinium bromide (CPB), cetyltrimethylammonium tosylate (CTAT), and cetyltriphenylphosphonium bromide (CTPPB) in the presence of 1-butanol (BuOH) and 1,4-butanediol (BTD) was investigated using tensiometry, 2D-nuclear Overhauser enhancement spectroscopy (2D-NOESY) and small angle neutron scattering (SANS) techniques. The adsorption parameters and micellar characteristics evaluated at 303.15 K distinctly showed that BuOH promotes the mixed micelle formation while BTD interfered with the micellization phenomenon. The SANS data fitted using an ellipsoid (as derived by Hayter and Penfold using the Ornstein-Zernike equation and the mean spherical approximation) and wormlike micellar models offered an insight into the micelle size/shape and aggregation number ( N agg ) in the examined systems. The evaluated descriptors presented a clear indication of the morphology transition in cationic micelles as induced by the addition of the two alcohols. We also offer an investigation into the acceptable molecular interactions governing the differences in micelle morphologies, using the non-invasive 2D-NOESY technique and molecular modeling. The experimental observations elucidated from computational simulation add novelty to this work. Giving an account to the structural complexity in the three cationic surfactants, the molecular dynamics (MD) simulation was performed for CPB micelles in an aqueous solution of alcohols that highlighted the micelle solvation and structural transition, which is further complemented in terms of critical packing parameter (PP) for the examined systems.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Page Range / eLocation ID:
19680 to 19692
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ion concentration polarization (ICP) has been broadly applied to accomplish electrokinetic focusing of charged species. However, ICP-based extraction and enrichment of uncharged (neutral) compounds, important for pharmaceutical, biological, and environmental applications, has not yet been reported. Here, we report the ICP-based continuous extraction of two neutral compounds from aqueous solution, by their partition into an ionic micellar phase. Our initial results show that the efficiency of the extraction increases with the concentration of the surfactant comprising the micellar phase, reaching 98 ± 2%, and drops precipitously when the concentration of the target compound exceeds the capacity of the micelles. As a key feature relevant to the practical application of this method, we show that focusing occurs even an order of magnitude below the critical micelle concentration through the local enrichment and assembly of surfactants into micelles, thus minimizing their consumption. To underscore the relevance of this approach to water purification, this method is applied to the extraction of pyrene, a model for polyaromatic hydrocarbons. This approach provides access to a broad range of strategies for selective separation that have been developed in micellar electrokinetic chromatography. 
    more » « less
  2. A delicate balance of noncovalent interactions directs the hierarchical self-assembly of molecular amphiphiles into spherical micelles that pack into three-dimensional periodic arrays, which mimic intermetallic crystals. Herein, we report the discovery that adding water to a mixture of an ionic surfactant andn-decane induces aperiodic ordering of oil-swollen spherical micelles into previously unrecognized, aqueous lyotropic dodecagonal quasicrystals (DDQCs), which exhibit local 12-fold rotational symmetry and no long-range translational order. The emergence of these DDQCs at the nexus of dynamically arrested micellar glasses and a periodic Frank–Kasper (FK) σ phase approximant sensitively depends on the mixing order of molecular constituents in the assembly process and on sample thermal history. Addition ofn-decane to mixtures of surfactant and water instead leads only to periodic FK A15 and σ approximants with no evidence for aperiodic order, while extended ambient temperature annealing of the DDQC also reveals its transformation into a σ phase. Thus, these lyotropic DDQCs are long-lived metastable morphologies, which nucleate and grow from a stochastic distribution of micelle sizes formed by abrupt segregation of varied amounts of oil into surfactant micelles on hydration. These findings indicate that molecular building block complexity is not a prerequisite for the formation of aperiodic supramolecular order, while also establishing the generic nature of quasicrystalline states across metal alloys and self-assembled micellar materials.

    more » « less
  3. null (Ed.)
    Bile salts, especially in their aggregated or micellar form, play a critical role in health and medicine by solubilizing cholesterol, fat-soluble vitamins, and drugs. However, in contrast to the head–tail (HT) surfactants like sodium dodecyl sulfate (SDS), amphiphilic bile salts have an unusual steroid structure and exhibit a smaller aggregation number ( N agg < 20 molecules per micelle vs. N agg > 50 for SDS). Foam films formed by micellar solutions of typical surfactants like SDS exhibit stratification manifested as stepwise thinning and coexistence of flat thick–thin regions that differ by a step-size proportional to the intermicellar distance. We consider drainage via stratification studies as an effective and insightful probe of the strength and magnitude of intermicellar interactions and resulting supramolecular oscillatory structural (SOS) surface force contribution to disjoining pressure. However, there are neither prior reports of stratification in foam films formed with bile salt solutions nor measurements of SOS surface forces. Here we report the discovery and characterization of stratification in foam films formed by aqueous solutions of four bile salts – sodium cholate (NaC), sodium taurocholate (NaTC), sodium deoxycholate (NaDC), and sodium glycodeoxycholate (NaGDC) – that have a similar steroid nucleus, but difference in conjugation sites and the number of hydroxyl groups (3 for NaC and NaTC, 2 for NaDC and NaGC). Using IDIOM (interferometry digital imaging optical microscopy) protocols we developed recently to characterize and analyze thickness variations and transitions, we find that foam films made with bile salts exhibit fewer stepwise transitions and smaller step-size than SDS solutions. Also, we measured a lower drop in surface tension and lower magnitude of thickness-dependent disjoining pressure compared to SDS solutions. We find that the bile salts with a matched number of hydroxyl groups exhibit similar properties in tensiometry and foam film studies. We show that the stratification studies can characterize the influence of chemical structure on the magnitude and range of intermicellar interactions as well their influence on drainage and stability of foam films. 
    more » « less
  4. null (Ed.)
    This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide- co -acrylonitrile) P(AAm- co -AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH. Importantly, micelles were able to hydrogen-bond with PMAA, with the critical interaction pH being temperature dependent. To better understand the thermodynamic nature of these interactions, in depth studies using isothermal titration calorimetry (ITC) were conducted. ITC reveals opposite signs of enthalpies for binding of PMAA with micellar coronae vs. with the cores. Moreover, ITC indicates that pH directs the interactions of PMAA with micelles, selectively enabling binding with the micellar corona at pH 4 or with both the corona and the core at pH 3. We then explore UCSTM/PMAA LbL assemblies and show that the two distinct modes of PMAA interaction with the micelles ( i.e. whether or not PMAA binds with the core) had significant effects on the film composition, structure, and functionality. Consistent with PMAA hydrogen bonding with the P(AAm- co -AN) micellar cores, a significantly higher fraction of PMAA was found within the films assembled at pH 3 compared to pH 4 by both spectroscopic ellipsometry and neutron reflectometry. Selective interaction of PMAA with PVP coronae of the assembled micelles, achieved by the emergence of partial ionization of PMAA at pH 4 was critical for preserving film functionality demonstrated as temperature-controlled swelling and release of a model small molecule, pyrene. The work done here can be applied to a multitude of assembled polymer systems in order to predict suppression/retention of their stimuli-responsive behavior. 
    more » « less
  5. The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions. 
    more » « less