skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization
The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.  more » « less
Award ID(s):
1930959
PAR ID:
10186222
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
12
Issue:
8
ISSN:
2073-4360
Page Range / eLocation ID:
1831
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding and characterizing the influence of polymers and surfactants on rheology, application, and processing is critical for designing complex fluid formulations for enhanced oil recovery, pharmaceuticals, cosmetics, foods, inks, agricultural sprays, and coatings. It is well-established that the addition of anionic surfactant like sodium dodecyl sulfate (SDS) to an aqueous solution of an oppositely-charged or uncharged polymer like poly(ethylene oxide) (PEO) can result in the formation of the polymer–surfactant association complexes (P 0 S − ACs) and a non-monotonic concentration-dependent variation in zero shear viscosity. However, the extensional rheology response of polymer–surfactant mixtures remains relatively poorly understood, partially due to characterization challenges that arise for low viscosity, low elasticity fluids, even though the response to strong extensional flows impacts drop formation and many processing operations. In this article, we use the recently developed dripping-onto-substrate (DoS) rheometry protocols to characterize the pinching dynamics and extensional rheology response of aqueous P 0 S − solutions formulated with PEO (P 0 ) and SDS (S − ), respectively. We find the PEO–SDS mixtures display a significantly weaker concentration-dependent variation in the extensional relaxation time, filament lifespan, and extensional viscosity values than anticipated by the measured shear viscosity. 
    more » « less
  2. In many commercial applications, polymer–dye interactions are frequently encountered from food to wastewater treatment, and while shear rheology has been well characterized, the extensional properties are not well known. The extensional viscosity ηE and relaxation time λE are the extensional rheological parameters that provide valuable insights into how aqueous polymers respond during deformation, and this study investigated the effect of dyes on the extensional rheology of three different aqueous polymer solutions (e.g., anionic, cationic, and neutral) paired with two different dye salts (e.g., anionic and cationic) using drop pinch-off experiments. We have found that the influence of dyes on the pinch-off dynamics is complex but generally leads to a decrease in, for example, the apparent extensional relaxation time. We have utilized the dripping-onto-substrate method to probe the uniaxial deformation of widely used polymers such as xanthan gum (XG), poly(diallyldimethylammonium chloride) (PDADMAC), and poly(ethylene oxide) (PEO) as the anionic, cationic, and neutral polymers, respectively, paired with either fluorescein (Fl) or methylene blue (MB) as the anionic and cationic dyes, respectively. Polymer–dye pairs with opposite charges (e.g., XG–MB and PDADMAC–Fl) displayed a pronounced decrease in pinch-off times, but even PEO, which is a neutral polymer, resulted in decreased pinch-off times, which was restored by the addition of NaCl. The pinch-off times for the Boger fluid (mixture of poly(ethylene glycol) and PEO), however, were surprisingly uninfluenced by dyes. These results showed that not only did the small addition of dyes strongly decrease the polymer relaxation times, but the relative importance of the dye salts on the polymer pinch-off dynamics was also different from that of pure salts such as NaCl. 
    more » « less
  3. One practical approach towards robust and stable biomimetic platforms is to generate hybrid bilayers that incorporate both lipids and block co-polymer amphiphiles. The currently limited number of reports on the interaction of glass surfaces with hybrid lipid and polymer vesicles—DOPC mixed with amphiphilic poly(ethylene oxide-b-butadiene) (PEO-PBd)—describe substantially different conclusions under very similar conditions (i.e., same pH). In this study, we varied vesicle composition and solution pH in order to generate a broader picture of spontaneous hybrid lipid/polymer vesicle interactions with rigid supports. Using quartz crystal microbalance with dissipation (QCM-D), we followed the interaction of hybrid lipid-polymer vesicles with borosilicate glass as a function of pH. We found pH-dependent adsorption/fusion of hybrid vesicles that accounts for some of the contradictory results observed in previous studies. Our results show that the formation of hybrid lipid-polymer bilayers is highly pH dependent and indicate that the interaction between glass surfaces and hybrid DOPC/PEO-PBd can be tuned with pH. 
    more » « less
  4. Nanocomposite polymer electrolytes (CPEs) are promising materials for all-solid-state lithium metal batteries (LMBs) due to their enhanced ionic conductivities and stability to the lithium anode. MXenes are a new two-dimensional, 2D, family of early transition metal carbides and nitrides, which have a high aspect ratio and a hydrophilic surface. Herein, using a green, facile aqueous solution blending method, we uniformly dispersed small amounts of Ti 3 C 2 T x into a poly(ethylene oxide)/LiTFSI complex (PEO 20 -LiTFSI) to fabricate MXene-based CPEs (MCPEs). The addition of the 2D flakes to PEO simultaneously retards PEO crystallization and enhances its segmental motion. Compared to the 0D and 1D nanofillers, MXenes show higher efficiency in ionic conductivity enhancement and improvement in the performance of LMBs. The CPE with 3.6 wt% MXene shows the highest ionic conductivity at room temperature (2.2 × 10 −5 S m −1 at 28 °C). An LMB using MCPE with only 1.5 wt% MXene shows rate capability and stability comparable with that of the state-of-the-art CPELMBs. We attribute the excellent performance to the 2D geometry of the filler, the good dispersion of the flakes in the polymer matrix, and the functional group-rich surface. 
    more » « less
  5. Abstract Block polyethers comprised of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEG or PEO) segments form the basis of ABA‐type PEO‐b‐PPO‐b‐PEO poloxamer materials. The inverse architecture with an internal hydrophilic PEO segment flanked by hydrophobic blocks can be difficult to prepare with control of architecture by use of traditional anionic polymerization. These oxyanionic polymerizations are plagued by chain‐transfer‐to‐monomer side reactions that occur with substituted epoxides such as propylene oxide (PO). Herein, we report a new method for the preparation of block polymers through a controlled polymerization involving a N‐Al Lewis adduct catalyst and an aluminum alkoxide macroinitiator. The Lewis pair catalyst was able to chain‐extend commercial PEO macroinitiators to prepare di‐, tri‐, and pentablock polyethers with low dispersity and reasonable monomer tolerance. Chain extension was confirmed using size exclusion chromatography and diffusion ordered nuclear magnetic resonance spectroscopy. The resulting block polymers were additionally analyzed with small‐angle X‐ray scattering to correlate the morphology to molecular architecture. 
    more » « less