skip to main content


Title: Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450
Naturally occurring enzymes can be a source of unnatural reactivity that can be molded by directed evolution to generate efficient biocatalysts with valuable activities. Owing to the lack of exploitable stereocontrol elements in synthetic systems, steering the absolute and relative stereochemistry of free-radical processes is notoriously difficult in asymmetric catalysis. Inspired by the innate redox properties of first-row transition-metal cofactors, we repurposed cytochromes P450 to catalyze stereoselective atom-transfer radical cyclization. A set of metalloenzymes was engineered to impose substantial stereocontrol over the radical addition step and the halogen rebound step in these unnatural processes, allowing enantio- and diastereodivergent radical catalysis. This evolvable metalloenzyme platform represents a promising solution to tame fleeting radical intermediates for asymmetric catalysis.  more » « less
Award ID(s):
1933487
NSF-PAR ID:
10328711
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6575
ISSN:
0036-8075
Page Range / eLocation ID:
1612 to 1616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Conspectus By using transition metal catalysts, chemists have altered the “logic of chemical synthesis” by enabling the functionalization of carbon–hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C–H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C–H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation). Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson’s catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage. Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C–C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H2. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C–C and C–O bond-forming reactions, as well as C–C bond-cleaving processes. 
    more » « less
  2. Abstract

    Visible‐light photocatalysis has advanced as a versatile tool in organic synthesis. However, attaining precise stereocontrol in photocatalytic reactions has been a longstanding challenge due to undesired photochemical background reactions and the involvement of highly reactive radicals or radical ion intermediates generated under photocatalytic conditions. To address this problem and expand the synthetic utility of photocatalytic reactions, a number of innovative strategies, including mono‐ and dual‐catalytic approaches, have recently emerged. Of these, exploiting chiral organocatalysis, such as enamine catalysis, iminium‐ion catalysis, Brønsted acid/base catalysis, andN‐heterocyclic carbene catalysis, to induce chirality transfer of photocatalytic reactions has been widely explored. This Review aims to provide a current, comprehensive overview of asymmetric photocatalytic reactions enabled by chiral organocatalysts published through June 2021. The substrate scope, advantages, limitations, and proposed reaction mechanisms of each reaction are discussed. This review should serve as a reference for the development of visible‐light‐induced asymmetric photocatalysis and promote the improvement of the chemical reactivity and stereoselectivity of these reactions.

     
    more » « less
  3. Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control. 
    more » « less
  4. The synthesis of stereochemically complex molecules in the pharmaceutical and agrochemical industries requires precise control over each distinct stereocenter, a feat that can be challenging and time consuming using traditional asymmetric synthesis. Although stereoconvergent processes have the potential to streamline and simplify synthetic routes, they are currently limited by a narrow scope of inducibly dynamic stereocenters that can be readily epimerized. Here, we report the use of photoredox catalysis to enable the racemization of traditionally static, unreactive stereocenters through the intermediacy of prochiral radical species. This technology was applied in conjunction with biocatalysts such as ketoreductases and aminotransferases to realize stereoconvergent syntheses of stereodefined γ-substituted alcohols and amines from β-substituted ketones.

     
    more » « less
  5. Abstract

    The field of strain‐driven, radical formal cycloadditions is experiencing a surge in activity motivated by a renaissance in free radical chemistry and growing demand for sp3‐rich ring systems. The former has been driven in large part by the rise of photoredox catalysis, and the latter by adoption of the “Escape from Flatland” concept in medicinal chemistry. In the years since these broader trends emerged, dozens of formal cycloadditions, including catalytic, asymmetric variants, have been developed that operate via radical mechanisms. While cyclopropanes have been studied most extensively, a variety of strained ring systems are amenable to the design of analogous reactions. Many of these processes generate lucrative, functionally decorated sp3‐rich ring systems that are difficult to access by other means. Herein, we summarize recent efforts in this area and analyze the state of the field.

     
    more » « less