Despite the enormous developments in asymmetric catalysis, the basis for asymmetric induction is largely limited to the spatial interaction between the substrate and catalyst. Consequently, asymmetric discrimination between two sterically similar groups remains a challenge. This is particularly formidable for enantiodifferentiation between two aryl groups without a directing group or electronic manipulation. Here we address this challenge by using a robust organocatalytic system leading to excellent enantioselection between aryl and heteroaryl groups. With versatile 2-indole imine methide as the platform, an excellent combination of a superb chiral phosphoric acid and the optimal hydride source provided efficient access to a range of highly enantioenriched indole-containing triarylmethanes. Control experiments and kinetic studies provided important insights into the mechanism. DFT calculations also indicated that while hydrogen bonding is important for activation, the key interaction for discrimination of the two aryl groups is mainly π–π stacking. Preliminary biological studies also demonstrated the great potential of these triarylmethanes for anticancer and antiviral drug development. 
                        more » 
                        « less   
                    
                            
                            Organocatalytic enantioselective dearomatization of thiophenes by 1,10-conjugate addition of indole imine methides
                        
                    
    
            Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1764328
- PAR ID:
- 10346566
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A gold(I)‐catalyzed enantioselective dearomatization is achieved via metal‐chiral ligand cooperation. A new and divergent synthesis of chiral bifunctional binaphthyl‐2‐ylphosphines is developed to allow rapid access to these ligands, which in turn facilitate the application of this chemistry to a broad substrate scope including 1‐naphthols, 2‐naphthols, and phenols. Enantiomeric excesses up to 98 % are achieved via selective acceleration of one enantiomer formation enabled by hydrogen bonding between substrate and ligand remote basic group. DFT calculations lend support to the cooperative catalysis and substantiate the reaction stereochemical outcomes.more » « less
- 
            Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalizationAbstract Reactions that lead to destruction of aromatic ring systems often require harsh conditions and, thus, take place with poor selectivities. Selective partial dearomatization of fused arenes is even more challenging but can be a strategic approach to creating versatile, complex polycyclic frameworks. Herein we describe a general organophotoredox approach for the chemo- and regioselective dearomatization of structurally diverse polycyclic aromatics, including quinolines, isoquinolines, quinoxalines, naphthalenes, anthracenes and phenanthrenes. The success of the method for chemoselective oxidative rupture of aromatic moieties relies on precise manipulation of the electronic nature of the fused polycyclic arenes. Mechanistic studies show that the addition of a hydrogen atom transfer (HAT) agent helps favor the dearomatization pathway over the more thermodynamically downhill aromatization pathway. We show that this strategy can be applied to rapid synthesis of biologically valued targets and late-stage skeletal remodeling en route to complex structures.more » « less
- 
            A synthesis of the natural product thebaine is reported in eight steps from commercially available starting materials, hinging on the dearomatization and coupling of simple aromatic starting materials. This provides divergent access to two unnatural opioid derivatives and is aimed at the long-term development of synthetic opioid analogs of the “wonderdrug” Naloxone. Additionally, a formal enantioselective synthesis of all reported targets is disclosed that leverages a catalytic asymmetric dearomatization via anion-pairing catalysis.more » « less
- 
            Abstract Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structuresviahighly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achievedviatwo‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readilyviapropargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    