skip to main content

Title: Relativistic Dynamical Stability Criterion of Multiplanet Systems with a Distant Companion
Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N -body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s 4 gas giants, orbiting within the influence of a 0.5 M⊙ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron toward the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet-planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin-orbit angles. This is typically done asmore »the planetary system precesses as a rigid disk under the influence of an inclined binary, and those systems with the highest spin-orbit angles should often retain their binary companion and possess multiple surviving planets.« less
  2. Abstract We use a high-precision radial velocity survey of FGKM stars to study the conditional occurrence of two classes of planets: close-in small planets (0.023–1 au, 2–30 M ⊕ ) and distant giant planets (0.23–10 au, 30–6000 M ⊕ ). We find that 41 − 13 + 15 % of systems with a close-in, small planet also host an outer giant, compared to 17.6 − 1.9 + 2.4 % for stars irrespective of small planet presence. This implies that small planet hosts may be enhanced in outer giant occurrences compared to all stars with 1.7 σ significance. Conversely, we estimate that 42 − 13 + 17 % of cold giant hosts also host an inner small planet, compared to 27.6 − 4.8 + 5.8 % of stars irrespective of cold giant presence. We also find that more massive and close-in giant planets are not associated with small inner planets. Specifically, our sample indicates that small planets are less likely to have outer giant companions more massive than approximately 120 M ⊕ and within 0.3–3 au, than to have less massive or more distant giant companions, with ∼2.2 σ confidence. This implies that massive gas giants within 0.3–3 au may suppressmore »inner small planet formation. Additionally, we compare the host-star metallicity distributions for systems with only small planets and those with both small planets and cold giants. In agreement with previous studies, we find that stars in our survey that only host small planets have a metallicity distribution that is consistent with the broader solar-metallicity-median sample, while stars that host both small planets and gas giants are distinctly metal rich with ∼2.3 σ confidence.« less
  3. ABSTRACT At least $70\, {\rm per\, cent}$ of massive OBA-type stars reside in binary or higher order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion’s gravitational perturbations on a massive binary’s orbital configuration before significant stellar evolution has taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10-Myr-old massive stars is consistent with EKL evolution.
  4. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models tomore »constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars.« less
  5. Abstract The recent discoveries of WD J091405.30+191412.25 (WD J0914 hereafter), a white dwarf (WD) likely accreting material from an ice-giant planet, and WD 1856+534 b (WD 1856 b hereafter), a Jupiter-sized planet transiting a WD, are the first direct evidence of giant planets orbiting WDs. However, for both systems, the observations indicate that the planets’ current orbital distances would have put them inside the stellar envelope during the red-giant phase, implying that the planets must have migrated to their current orbits after their host stars became WDs. Furthermore, WD J0914 is a very hot WD with a short cooling time that indicates a fast migration mechanism. Here, we demonstrate that the Eccentric Kozai–Lidov Mechanism, combined with stellar evolution and tidal effects, can naturally produce the observed orbital configurations, assuming that the WDs have distant stellar companions. Indeed, WD 1856 is part of a stellar triple system, being a distant companion to a stellar binary. We provide constraints for the orbital and physical characteristics for the potential stellar companion of WD J0914 and determine the initial orbital parameters of the WD 1856 system.