skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-Range Dipole–Dipole Interactions in a Plasmonic Lattice
Award ID(s):
1654676 1904385
PAR ID:
10328739
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
Volume:
22
Issue:
1
ISSN:
1530-6984
Page Range / eLocation ID:
22 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Structures composed of classical dipoles in higher-dimensional space present a unique opportunity to venture beyond the conventional paradigm of few-body or cluster physics. In this work, we consider the six convex regular polychora that exist in an Euclidean four-dimensional space as a theoretical benchmark for hte investigation of dipolar systems in higher dimensions. The structures under consideration represent the four-dimensional counterparts of the well-known Platonic solids in three-dimensions. A dipole is placed in each vertex of the structure and is allowed to interact with the rest of the system via the usual dipole–dipole interaction generalized to the higher dimension. We use numerical tools to minimize the total interaction energy of the systems and observe that all six structures represent dipole clusters with a zero net dipole moment. The minimum energy is achieved for dipoles arranging themselves with orientations whose angles are commensurate or irrational fractions of the number π. 
    more » « less
  3. Over the last decade there has been a debate regarding the role of the photonic environment in enhancing, inhibiting and imparting coherence to dipole-dipole interactions. We develop a unified figure of merit to conclusively explain multiple recent experiments. 
    more » « less
  4. Dipole-dipole interactions ( V dd ) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials. 
    more » « less
  5. We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system, we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which play a critical role in slowing the dynamics of the three- and four-body interactions. Published by the American Physical Society2024 
    more » « less