skip to main content


Title: Observation of long-range dipole-dipole interactions in hyperbolic metamaterials
Dipole-dipole interactions ( V dd ) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials.  more » « less
Award ID(s):
1654676
NSF-PAR ID:
10165118
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
4
Issue:
10
ISSN:
2375-2548
Page Range / eLocation ID:
eaar5278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor–acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA. 
    more » « less
  2. Abstract

    A long-standing problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, Han-Kwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system ofNparticles interacting in$${\mathbb {T}}^d$$Td,$$d\ge 2$$d2, via Newton’s second law through asupercritical mean-field limit. Namely, the coupling constant$$\lambda $$λin front of the pair potential, which is Coulombic, scales like$$N^{-\theta }$$N-θfor some$$\theta \in (0,1)$$θ(0,1), in contrast to the usual mean-field scaling$$\lambda \sim N^{-1}$$λN-1. Assuming$$\theta \in (1-\frac{2}{d(d+1)},1)$$θ(1-2d(d+1),1), they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as$$N\rightarrow \infty $$N. Han-Kwan and Iacobelli asked if their range for$$\theta $$θwas optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit$$N\rightarrow \infty $$Nfor$$\theta \in (1-\frac{2}{d},1)$$θ(1-2d,1). Our proof is based on Serfaty’s modulated-energy method, but compared to that of Han-Kwan and Iacobelli, crucially uses an improved “renormalized commutator” estimate to obtain the larger range for$$\theta $$θ. Additionally, we show that for$$\theta \le 1-\frac{2}{d}$$θ1-2d, one cannot, in general, expect convergence in the modulated energy notion of distance.

     
    more » « less
  3. The resonance energy transfer and entanglement between two-level quantum emitters are typically limited to sub-wavelength distances due to the inherently short-range nature of the dipole–dipole interactions. Moreover, the entanglement of quantum systems is hard to preserve for a long time period due to decoherence and dephasing mainly caused by radiative and nonradiative losses. In this work, we outperform the aforementioned limitations by presenting efficient long-range inter-emitter entanglement and large enhancement of resonance energy transfer between two optical qubits mediated by epsilon-near-zero (ENZ) and other plasmonic waveguide types, such as V-shaped grooves and cylindrical nanorods. More importantly, we explicitly demonstrate that the ENZ waveguide resonant energy transfer and entanglement performance drastically outperforms the other waveguide systems. Only the excited ENZ mode has an infinite phase velocity combined with a strong and homogeneous electric field distribution, which leads to a giant energy transfer and efficient entanglement independent of the emitters’ separation distances and nanoscale positions in the ENZ nanowaveguide, an advantageous feature that can potentially accommodate multi-qubit entanglement. Moreover, the transient entanglement can be further improved and become almost independent of the detrimental decoherence effect when an optically active (gain) medium is embedded inside the ENZ waveguide. We also present that efficient steady-state entanglement can be achieved by using a coherent external pumping scheme. Finally, we report a practical way to detect the steady-state entanglement by computing the second-order correlation function. The presented findings stress the importance of plasmonic ENZ waveguides in the design of the envisioned on-chip quantum communication and information processing plasmonic nanodevices. 
    more » « less
  4. Abstract

    Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro‐ and nanoscale systems; however, to date, large‐scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self‐assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole–dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole–dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096m) that dictates the degree of dipole interaction is examined—a property dependent on particle size and inter‐particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self‐assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole‐induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.

     
    more » « less
  5. Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and sub-volume law scaling is also present, and is distinct from the ordering transition. The two phases correspond to an error-correcting and a quantum-Zeno regimes, respectively. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms. 
    more » « less