skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Advances in the prediction of MJO-Teleconnections in the S2S forecast systems
Abstract This study evaluates the ability of state-of-the-art subseasonal to seasonal (S2S) forecasting systems to represent and predict the teleconnections of the Madden Julian Oscillations and their effects on weather in terms of midlatitude weather patterns and North Atlantic tropical cyclones. This evaluation of forecast systems applies novel diagnostics developed to track teleconnections along their preferred pathways in the troposphere and stratosphere, and to measure the global and regional responses induced by teleconnections across both the Northern and Southern Hemispheres. Results of this study will help the modeling community understand to what extent the potential to predict the weather on S2S time scales is achieved by the current generation of forecasting systems, while informing where to focus further development efforts. The findings of this study will also provide impact modelers and decision makers with a better understanding of the potential of S2S predictions related to MJO teleconnections.  more » « less
Award ID(s):
1652289
NSF-PAR ID:
10328758
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The stratosphere can have a significant impact on winter surface weather on subseasonal to seasonal (S2S) timescales. This study evaluates the ability of current operational S2S prediction systems to capture two important links between the stratosphere and troposphere: (1) changes in probabilistic prediction skill in the extratropical stratosphere by precursors in the tropics and the extratropical troposphere and (2) changes in surface predictability in the extratropics after stratospheric weak and strong vortex events. Probabilistic skill exists for stratospheric events when including extratropical tropospheric precursors over the North Pacific and Eurasia, though only a limited set of models captures the Eurasian precursors. Tropical teleconnections such as the Madden‐Julian Oscillation, the Quasi‐Biennial Oscillation, and El Niño–Southern Oscillation increase the probabilistic skill of the polar vortex strength, though these are only captured by a limited set of models. At the surface, predictability is increased over the United States, Russia, and the Middle East for weak vortex events, but not for Europe, and the change in predictability is smaller for strong vortex events for all prediction systems. Prediction systems with poorly resolved stratospheric processes represent this skill to a lesser degree. Altogether, the analyses indicate that correctly simulating stratospheric variability and stratosphere‐troposphere dynamical coupling are critical elements for skillful S2S wintertime predictions.

     
    more » « less
  2. The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

     
    more » « less
  3. The Madden–Julian oscillation (MJO) excites strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. A previous study showed that particular MJO phases are characterized by a consistent modulation of geopotential heights in the North Pacific and adjacent regions across different MJO events, and demonstrated that this consistency is beneficial for extended numerical weather forecasts (i.e., lead times of two weeks to one month). In this study, we examine the physical mechanisms that lead some MJO phases to have more consistent teleconnections than others using a linear baroclinic model. The results show that MJO phases 2, 3, 6, and 7 consistently generate Pacific–North American (PNA)-like patterns on S2S time scales while other phases do not. A Rossby wave source analysis is applied and shows that a dipole-like pattern of Rossby wave source on each side of the subtropical jet can increase the pattern consistency of teleconnections due to the constructive interference of similar teleconnection signals. On the other hand, symmetric patterns of Rossby wave source can dramatically reduce the pattern consistency due to destructive interference. A dipole-like Rossby wave source pattern is present most frequently when tropical heating is found in the Indian Ocean or the Pacific warm pool, and a symmetric Rossby wave source is present most frequently when tropical heating is located over the Maritime Continent. Thus, the MJO phase-dependent pattern consistency of teleconnections is a special case of this mechanism.

     
    more » « less
  4. Abstract

    Extreme weather events have significant consequences, dominating the impact of climate on society. While high‐resolution weather models can forecast many types of extreme events on synoptic timescales, long‐term climatological risk assessment is an altogether different problem. A once‐in‐a‐century event takes, on average, 100 years of simulation time to appear just once, far beyond the typical integration length of a weather forecast model. Therefore, this task is left to cheaper, but less accurate, low‐resolution or statistical models. But there is untapped potential in weather model output: despite being short in duration, weather forecast ensembles are produced multiple times a week. Integrations are launched with independent perturbations, causing them to spread apart over time and broadly sample phase space. Collectively, these integrations add up to thousands of years of data. We establish methods to extract climatological information from these short weather simulations. Using ensemble hindcasts by the European Center for Medium‐range Weather Forecasting archived in the subseasonal‐to‐seasonal (S2S) database, we characterize sudden stratospheric warming (SSW) events with multi‐centennial return times. Consistent results are found between alternative methods, including basic counting strategies and Markov state modeling. By carefully combining trajectories together, we obtain estimates of SSW frequencies and their seasonal distributions that are consistent with reanalysis‐derived estimates for moderately rare events, but with much tighter uncertainty bounds, and which can be extended to events of unprecedented severity that have not yet been observed historically. These methods hold potential for assessing extreme events throughout the climate system, beyond this example of stratospheric extremes.

     
    more » « less
  5. Abstract

    Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.

     
    more » « less