skip to main content

This content will become publicly available on February 11, 2023

Title: Advances in the prediction of MJO-Teleconnections in the S2S forecast systems
Abstract This study evaluates the ability of state-of-the-art subseasonal to seasonal (S2S) forecasting systems to represent and predict the teleconnections of the Madden Julian Oscillations and their effects on weather in terms of midlatitude weather patterns and North Atlantic tropical cyclones. This evaluation of forecast systems applies novel diagnostics developed to track teleconnections along their preferred pathways in the troposphere and stratosphere, and to measure the global and regional responses induced by teleconnections across both the Northern and Southern Hemispheres. Results of this study will help the modeling community understand to what extent the potential to predict the weather on S2S time scales is achieved by the current generation of forecasting systems, while informing where to focus further development efforts. The findings of this study will also provide impact modelers and decision makers with a better understanding of the potential of S2S predictions related to MJO teleconnections.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1652289
Publication Date:
NSF-PAR ID:
10328758
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Sponsoring Org:
National Science Foundation
More Like this
  1. The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection.more »However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

    « less
  2. The Madden–Julian oscillation (MJO) excites strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. A previous study showed that particular MJO phases are characterized by a consistent modulation of geopotential heights in the North Pacific and adjacent regions across different MJO events, and demonstrated that this consistency is beneficial for extended numerical weather forecasts (i.e., lead times of two weeks to one month). In this study, we examine the physical mechanisms that lead some MJO phases to have more consistent teleconnections than others using a linear baroclinic model. The results show that MJO phases 2, 3, 6, and 7 consistently generate Pacific–North American (PNA)-like patterns on S2S time scales while other phases do not. A Rossby wave source analysis is applied and shows that a dipole-like pattern of Rossby wave source on each side of the subtropical jet can increase the pattern consistency of teleconnections due to the constructive interference of similar teleconnection signals. On the other hand, symmetric patterns of Rossby wave source can dramatically reduce the pattern consistency due to destructive interference. A dipole-like Rossby wave source pattern is present most frequently when tropical heating is found in the Indian Ocean or themore »Pacific warm pool, and a symmetric Rossby wave source is present most frequently when tropical heating is located over the Maritime Continent. Thus, the MJO phase-dependent pattern consistency of teleconnections is a special case of this mechanism.

    « less
  3. The Madden–Julian oscillation (MJO) is one of the most important sources of predictability on subseasonal to seasonal (S2S) time scales. Many previous studies have explored the impact of the present state of the MJO on the future evolution and predictability of extratropical weather patterns. What is still unclear, however, is the importance of the accumulated influence of past MJO activity on these results. In this study, the importance of past MJO activity in determining the future state of extratropical circulations is examined by using a linear baroclinic model (LBM) and one of the simplest machine learning algorithms: logistic regression. By increasing the complexity of the logistic regression model with additional information about the past activity of the MJO, it is demonstrated that the past 15 days play a dominant role in determining the state of MJO teleconnections more than 15 days into the future. This conclusion is supported by numerical LBM simulations. It is further shown that the past 15 days of additional information are only important for some MJO phases/lead times and not others, and the physical basis for this result is explored.

  4. Abstract: Load forecasting plays a very crucial role in many aspects of electric power systems including the economic and social benefits. Previously, there have been many studies involving load forecasting using time series approach, including weather-load relationships. In one such approach to predict load, this paper investigates through different structures that aim to relate various daily parameters. These parameters include temperature, humidity and solar radiation that comprises the weather data. Along with natural phenomenon as weather, physical aspects such as traffic flow are also considered. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. Electricity consumption data is collected from the City of Tallahassee utilities. Traffic count is provided by the Florida Department of Transportation. Moreover, the weather data is obtained from Tallahassee regional Airport weather station. This paper aims to study and establish a cause and effect relationship between the mentioned variables using different causality models and to forecast load based on the external variables. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered.
  5. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengtheningmore »of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO.

    « less