skip to main content

Title: Connecting solar flare hard X-ray spectra to in situ electron spectra: A comparison of RHESSI and STEREO/SEPT observations
Aims. We aim to constrain the acceleration, injection, and transport processes of flare-accelerated energetic electrons by comparing their characteristics at the Sun with those injected into interplanetary space. Methods. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison. Results. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 min. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration. Conclusions. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The acceleration and transport of energetic electrons during solar flares is one of the outstanding topics in solar physics. Recent X-ray and radio imaging and spectroscopy observations have provided diagnostics of the distribution of nonthermal electrons and suggested that, in certain flare events, electrons are primarily accelerated in the loop top and likely experience trapping and/or scattering effects. By combining the focused particle transport equation with magnetohydrodynamic (MHD) simulations of solar flares, we present a macroscopic particle model that naturally incorporates electron acceleration and transport. Our simulation results indicate that physical processes such as turbulent pitch-angle scattering can have important impacts on both electron acceleration in the loop top and transport in the flare loop, and their influences are highly energy-dependent. A spatial-dependent turbulent scattering with enhancement in the loop top can enable both efficient electron acceleration to high energies and transport of abundant electrons to the footpoints. We further generate spatially resolved synthetic hard X-ray (HXR) emission images and spectra, revealing both the loop-top and footpoint HXR sources. Similar to the observations, we show that the footpoint HXR sources are brighter and harder than the loop-top HXR source. We suggest that the macroscopic particle model provides new insights into understanding the connection between the observed loop-top and footpoint nonthermal emission sources by combining the particle model with dynamically evolving MHD simulations of solar flares. 
    more » « less
  2. Abstract A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how these X-ray-emitting electrons are accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bidirectional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to >100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares. 
    more » « less
  3. Abstract We present a multiwavelength analysis of two flare-related jets on 2014 November 13, using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), the Reuven High Energy Solar Spectroscopic Imager (RHESSI), the Hinode/X-ray Telescope (XRT), and the Interface Region Imaging Spectrograph (IRIS). Unlike most coronal jets, where hard X-ray (HXR) emissions are usually observed near the jet base, in these events HXR emissions are found at several locations, including in the corona. We carry out the first differential emission measure analysis that combines both AIA (and XRT, when available) bandpass filter data and RHESSI HXR measurements for coronal jets, and obtain self-consistent results across a wide temperature range and into nonthermal energies. In both events, hot plasma first appears at the jet base, but as the base plasma gradually cools, hot plasma also appears near the jet top. Moreover, nonthermal electrons, while only mildly energetic, are found in multiple HXR locations and contain large amounts of total energy. In particular, the energetic electrons that produce the HXR sources at the jet top are accelerated near the top location, rather than traveling from a reconnection site at the jet base. This means that there is more than one particle acceleration site in each event. Jet velocities are consistent with previous studies, including the upward and downward velocities around ∼200 km s −1 and ∼100 km s −1 , respectively, and fast outflows of 400–700 km s −1 . We also examine the energy partition in the later event, and find that the nonthermal energy in the accelerated electrons is most significant compared to the other energy forms considered. We discuss the interpretations and provide constraints on the mechanisms for coronal jet formation. 
    more » « less
  4. Abstract

    Solar type III radio bursts are generated by beams of energetic electrons that travel along open magnetic field lines through the corona and into interplanetary space. However, understanding the source of these electrons and how they escape into interplanetary space remains an outstanding topic. Here we report multi-instrument, multiperspective observations of an interplanetary type III radio burst event shortly after the second perihelion of the Parker Solar Probe (PSP). This event was associated with a solar jet that produced an impulsive microwave burst event recorded by the Expanded Owens Valley Solar Array. The type III burst event also coincided with the detection of enhanced in situ energetic electrons recorded by both PSP at 0.37 au and WIND at 1 au, which were located very closely on the Parker spiral longitudinally. The close timing association and magnetic connectivity suggest that the in situ energetic electrons originated from the jet’s magnetic reconnection region. Intriguingly, microwave imaging spectroscopy results suggest that the escaping energetic electrons were injected into a large opening angle of about 90°, which is at least nine times broader than the apparent width of the jet spire. Our findings provide an interpretation for the previously reported, longitudinally broad spatial distribution of flare locations associated with prompt energetic electron events and have important implications for understanding the origin and distribution of energetic electrons in interplanetary space.

    more » « less
  5. Aims. We analyse particle, radio, and X-ray observations during the first relativistic proton event of solar cycle 25 detected on Earth. The aim is to gain insight into the relationship between relativistic solar particles detected in space and the processes of acceleration and propagation in solar eruptive events. Methods. To this end, we used ground-based neutron monitor measurements of relativistic nucleons and space-borne measurements of electrons with similar speed to determine the arrival times of the first particles at 1 AU and to infer their solar release times. We compared the release times with the time histories of non-thermal electrons in the solar atmosphere and their escape to interplanetary space, as traced by radio spectra and X-ray light curves and images. Results. Non-thermal electrons in the corona are found to be accelerated in different regions. Some are confined in closed magnetic structures expanding during the course of the event. Three episodes of electron escape to the interplanetary space are revealed by groups of decametric-to-kilometric type III bursts. The first group appears on the low-frequency side of a type II burst produced by a coronal shock wave. The two latter groups are accompanied at higher frequencies by bursts with rapid drifts to both lower and higher frequencies (forward- or reverse-drifting bursts). They are produced by electron beams that propagate both sunward and anti-sunward. The first relativistic electrons and nucleons observed near Earth are released with the third group of type III bursts, more than ten minutes after the first signatures of non-thermal electrons and of the formation of the shock wave in the corona. Although the eruptive active region is near the central meridian, several tens of degrees east of the footpoint of the nominal Parker spiral to the Earth, the kilometric spectrum of the type III bursts and the in situ detection of Langmuir waves demonstrate a direct magnetic connection between the L1 Lagrange point and the field lines onto which the electron beams are released at the Sun. Conclusions. We interpret the forward- and reverse-drifting radio bursts as evidence of reconnection between the closed expanding magnetic structures of an erupting flux rope and ambient open magnetic field lines. We discuss the origin of relativistic particles near the Earth across two scenarios: (1) acceleration at the CME-driven shock as it intercepts interplanetary magnetic field lines rooted in the western solar hemisphere and (2) an alternative where the relativistic particles are initially confined in the erupting magnetic fields and get access to the open field lines to the Earth through these reconnection events. 
    more » « less