skip to main content

Title: Electrochemically induced metal- vs. ligand-based redox changes in mackinawite: identification of a Fe 3+ - and polysulfide-containing intermediate
Under anaerobic conditions, ferrous iron reacts with sulfide producing FeS, which can then undergo a temperature, redox potential, and pH dependent maturation process resulting in the formation of oxidized mineral phases, such as greigite or pyrite. A greater understanding of this maturation process holds promise for the development of iron-sulfide catalysts, which are known to promote diverse chemical reactions, such as H + , CO 2 and NO 3 − reduction processes. Hampering the full realization of the catalytic potential of FeS, however, is an incomplete knowledge of the molecular and redox processess ocurring between mineral and nanoparticulate phases. Here, we investigated the chemical properties of iron-sulfide by cyclic voltammetry, Raman and X-ray absorption spectroscopic techniques. Tracing oxidative maturation pathways by varying electrode potential, nanoparticulate n (Fe 2+ S 2− ) (s) was found to oxidize to a Fe 3+ containing FeS phase at −0.5 V vs. Ag/AgCl (pH = 7). In a subsequent oxidation, polysulfides are proposed to give a material that is composed of Fe 2+ , Fe 3+ , S 2− and polysulfide (S n 2− ) species, with its composition described as Fe 2+ 1−3 x Fe 3+ 2 x S 2− 1− y (S n more » 2− ) y . Thermodynamic properties of model compounds calculated by density functional theory indicate that ligand oxidation occurs in conjunction with structural rearrangements, whereas metal oxidation may occur prior to structural rearrangement. These findings together point to the existence of a metastable FeS phase located at the junction of a metal-based oxidation path between FeS and greigite (Fe 2+ Fe 3+ 2 S 2− 4 ) and a ligand-based oxidation path between FeS and pyrite (Fe 2+ (S 2 ) 2− ). « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
11763 to 11774
Sponsoring Org:
National Science Foundation
More Like this
  1. The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X‑ray absorption near-edge structure spectroscopy (S-XANES) where S6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms. One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, themore »energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel. The thermodynamics of incorporation of disulfide and bisulfide into apatite are evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S are also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS2(aq)(2–n) and HnS(aq)(2–n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite and decreases for hydroxylapatite as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended also to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures.« less
  2. Molybdenum (Mo) in marine sediments has been used as a paleoproxy to provide evidence for past oceanic euxinic and sulfidic conditions through its association with pyrite. Here, we examine the adsorption of Mo to the pyrite precursors mackinawite and greigite and assess the robustness of this association during iron sulfide phase transformations. Tetrathiomolybdate (MoS42–) adsorption experiments were done using mackinawite and greigite that had been characterized using powder X-ray diffraction and Raman spectroscopy. Adsorption of tetrathiomolybdate to mackinawite and to a primarily greigite mixture was similar. Both showed little change to the mineral phase upon adsorption. Relative to previously published data on pyrite, there was a much greater amount of Mo adsorption and a different mode of adsorption. A mackinawite/greigite mixture was also synthesized through an alternative method that more closely mimicked environmental conditions with a brief in situ aging to form an initial phase of iron sulfide, likely highly disordered mackinawite, and the near-immediate addition of MoS42–. X-ray photoelectron spectroscopy results support the adsorption of tetrathiomolybdate and its concomitant reduction to Mo(IV). The Mo-adsorbed mackinawite/greigite mixture was transformed through heating into a greigite/pyrite mixture while monitoring Mo release to the aqueous phase. Here, the sorption of Mo on themore »solid phase promoted the transformation of mackinawite into pyrite upon heating without diagenetic loss of Mo to the aqueous phase. These results support the early capture of MoS42– to less-stable forms of iron sulfide with negligible diagenetic loss during subsequent transformation. This work continues to point to Mo(VI) as a plausible oxidant of FeS to FeS2 within natural euxinic settings.« less
  3. Loss of tidal wetlands is a world-wide phenomenon. Many factors may contribute to such loss, but among them are geochemical stressors such as exposure of the marsh plants to elevated levels on hydrogen sulfide in the pore water of the marsh peat. Here we report the results of a study of the geochemistry of iron and sulfide at different seasons in unrestored (JoCo) and partially restored (Big Egg) salt marshes in Jamaica Bay, a highly urbanized estuary in New York City where the loss of salt marsh area has accelerated in recent years. The spatial and temporal 2-dimensional distribution patterns of dissolved Fe 2+ and H 2 S in salt marshes were in situ mapped with high resolution planar sensors for the first time. The vertical profiles of Fe 2+ and hydrogen sulfide, as well as related solutes and redox potentials in marsh were also evaluated by sampling the pore water at discrete depths. Sediment cores were collected at various seasons and the solid phase Fe, S, N, C, and chromium reducible sulfide in marsh peat at discrete depths were further investigated in order to study Fe and S cycles, and their relationship to the organic matter cycling at differentmore »seasons. Our results revealed that the redox sensitive elements Fe 2+ and S 2– showed significantly heterogeneous and complex three dimensional distribution patterns in salt marsh, over mm to cm scales, directly associated with the plant roots due to the oxygen leakage from roots and redox diagenetic reactions. We hypothesize that the oxic layers with low/undetected H 2 S and Fe 2+ formed around roots help marsh plants to survive in the high levels of H 2 S by reducing sulfide absorption. The overall concentrations of Fe 2+ and H 2 S and distribution patterns also seasonally varied with temperature change. H 2 S level in JoCo sampling site could change from <0.02 mM in spring to >5 mM in fall season, reflecting significantly seasonal variation in the rates of bacterial oxidation of organic matter at this marsh site. Solid phase Fe and S showed that very high fractions of the diagenetically reactive iron at JoCo and Big Egg were associated with pyrite that can persist for long periods in anoxic sediments. This implies that there is insufficient diagenetically reactive iron to buffer the pore water hydrogen sulfide through formation of iron sulfides at JoCo and Big Egg.« less
  4. Examination of a global suite of eclogite-facies metabasites and metasediments suggests that eclogites tend to exhibit reduced mineral assemblages relative to their protoliths. High-pressure rocks tend to lack sulfides and Fe3+-bearing oxides in the eclogite facies. We suggest that eclogite-facies mineral assemblages are consistent with prograde reactions that balance the oxidation of S2- or S- to S6+ by reducing Fe3+in silicates or oxides: (1)8Fe3+Si O (OH) +S2-=8Fe2+Si O +SO 2-+(H O) abc de42f The oxidation of one mole of S2-or S-is balanced by the reduction of 7 to 8 moles of Fe3+, and typical S concentrations in the oceanic crust are capable of fully reducing the entire Fe3+ budget of metabasites. As most eclogite facies rocks do not preserve peak metamorphic sulfides, petrographic evidence for prograde S oxidation reactions are cryptic; however, textures associated with sulfate reduction in response to influx of external fluids are common (reaction 1 in reverse). These reactions produce Fe3+-rich phases and are observed in both metasedimentary and metabasic rocks across a range of retrograde P-T paths (blueschist to granulite facies). For example, high-P calc- schists exhibit reaction textures that suggest the breakdown of garnet and white mica to produce pyrite + chalcopyrite + epidote +more »biotite + magnetite. Our thermodynamic models of aS2 and aO2 at subduction zone P-T conditions suggest assemblages of this type are indicative of aO2 0.7 to 4.5 log units above the quartz-fayalite-magnetite buffer. In rehydrated eclogites, pyrite is commonly associated with the breakdown of garnet + omphacite to amphibole + pyrite. Additionally, direct precipitation of sulfide from sulfate is observed in two samples: 1) The retrograde assemblage pyrite + ilmenite + gypsum occurs in one retrogressed metagabbroic eclogite, and 2) Coronas of secondary pyrite + barite + gypsum enclose early retrograde pyrite in a retrogressed garnet blueschist. In many eclogites, S- is reduced to S2- as pyrite is replaced by pyrrhotite, chalcopyrite, and mixed valence Co-Ni sulfides. These reactions are balanced by oxidation of divalent to trivalent Fe-Co-Ni. Reactions of this type are consistent with increasing aS2 during retrograde metamorphism. Thus, ample evidence exists for oxidized S-bearing fluids released from subducting slabs.« less
  5. The large range in oxidation states of sulfur (-II to +VI) provides it with a large oxidation potential in rocks, even at relatively low concentrations. Most importantly, the transition from sulfide to sulfate species in rocks and silicate melts occurs in the same approximate fO2 region (for a given temperature) as the transition from ferrous to ferric iron, and reduced S species can coexist with oxidized Fe and vice versa. The result is a large potential for reactions involving sulfur to oxidize or reduce Fe in silicate minerals, since Fe only occurs in two oxidation states (+II and +III). In order for sulfur to be released during slab dehydration, sulfur in sulfide must be converted into an easily dissolved species, such as SO42− or H2S, through either oxidation or reduction. We propose that oxidation of sulfur in sulfide follows the generalized reaction: 8Fe3+SiaOb(OH)c +S2− = 8Fe2+SidOe +SO42− +(H2O)f (1) In this type of reaction, sulfur participates in the dehydration of greenschist- or blueschist-facies hydrous silicates during transition to the eclogite facies: ferric Fe in Fe-bearing silicates (chlorite, amphibole, epidote) is reduced to ferrous Fe in anhydrous ferromagnesian silicates (pyroxene, garnet). At the same time, the reaction consumes sulfide by oxidationmore »of S2− to produce SO42−, which is readily dissolved in the fluid produced during dehydration. Additionally, a similar redox reaction could oxidize sulfur by reducing ferric Fe in oxides. It is important to note that one mole of S has the same redox potential as 8 moles of Fe. The molar ratio of 8 moles of Fe per 1 mole of S translates to a mass ratio of approximately 14; therefore, small concentrations of sulfur can have a large impact on reduction/oxidation of the silicate assemblage. Our observations show that sulfide minerals that can be identified as primary or related to the peak metamorphic stage are rare in eclogites and restricted to inclusions in garnet, consistent with reaction (1). Thermodynamic modeling is currently underway to assess the influence of sulfur on the phase equilibria of silicate phases during high pressure metamorphism.« less