skip to main content


Title: Future Career Pathway Perceptions of Lower-Income Computing Students Through the Lens of Capital Exchange
Prior scholarship on broadening participation in undergraduate computing education has made important contributions to supporting underrepresented students’ identity development and persistence. However, the specific experiences of low-income students are underexplored, and the critical juncture between undergraduate education and career or graduate school pathways are as well. For scholarship support programs to make a further impact on broadening participation in computing, it is critical to know low-income students’ viewpoints on the barriers, risks, and opportunities associated with different career pathways that influence their post-graduation plans. Our research seeks to better understand the future career pathway perceptions of low-income undergraduate computing students. We explore students’ perceptions of three specific pathways: pursuing a graduate degree, working for a large company, and becoming an entrepreneur. This study utilizes Bourdieu’s conception of economic capital, cultural capital, and social capital to understand low-income students’ perceptions of their future career pathways. This study is a part of a National Science Foundation-funded program that provides need-based scholarships, internship connections, research opportunities, and entrepreneurial education to low-income students pursuing a bachelor’s degree in computer science, information technology, cybersecurity, or computer engineering. The program includes three large, public universities in the Southeast United States and was launched in September 2021. We conducted semi-structured interviews with 16 participants from one of the participating universities to gather information about their perceptions of professional, graduate school, and entrepreneurial career pathways. The interviews were transcribed verbatim and analyzed using thematic coding. We found that the majority of our low-income participants plan to work for a large technology-focused company immediately after graduation. However, some participants indicated that the program’s scholarship, which covers up to two years of graduate education in a computing field, gives them the ability to consider pursuing a master’s degree between completing their bachelor’s degree and entering the workforce. Additionally, though many participants expressed that the idea of becoming an entrepreneur is appealing, the financial risks associated with entrepreneurship deter them from considering this career pathway themselves. Ultimately, our findings suggest that financial stability is a crucial consideration for low-income computing students as they contemplate their future goals. The participants’ responses demonstrate the importance of need-based financial aid and internship connections for low-income computing students. Furthermore, our findings indicate that intervention programs that aim to support low-income students’ career development should be more sensitive to the unique perspectives and financial concerns of low-income students when they promote graduate school and entrepreneurial pathways.  more » « less
Award ID(s):
2130398
NSF-PAR ID:
10328849
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 2022 Annual Conference and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prior scholarship on broadening participation in undergraduate computing education has made important contributions to supporting underrepresented students’ identity development and persistence. However, the specific experiences of low-income students are underexplored, and the critical juncture between undergraduate education and career or graduate school pathways are as well. For scholarship support programs to make a further impact on broadening participation in computing, it is critical to know low-income students’ viewpoints on the barriers, risks, and opportunities associated with different career pathways that influence their post-graduation plans. Our research seeks to better understand the future career pathway perceptions of low-income undergraduate computing students. We explore students’ perceptions of three specific pathways: pursuing a graduate degree, working for a large company, and becoming an entrepreneur. This study utilizes Bourdieu’s conception of economic capital, cultural capital, and social capital to understand low-income students’ perceptions of their future career pathways. This study is a part of a National Science Foundation-funded program that provides need-based scholarships, internship connections, research opportunities, and entrepreneurial education to low-income students pursuing a bachelor’s degree in computer science, information technology, cybersecurity, or computer engineering. The program includes three large, public universities in the Southeast United States and was launched in September 2021. We conducted semi-structured interviews with 16 participants from one of the participating universities to gather information about their perceptions of professional, graduate school, and entrepreneurial career pathways. The interviews were transcribed verbatim and analyzed using thematic coding. We found that the majority of our low-income participants plan to work for a large technology-focused company immediately after graduation. However, some participants indicated that the program’s scholarship, which covers up to two years of graduate education in a computing field, gives them the ability to consider pursuing a master’s degree between completing their bachelor’s degree and entering the workforce. Additionally, though many participants expressed that the idea of becoming an entrepreneur is appealing, the financial risks associated with entrepreneurship deter them from considering this career pathway themselves. Ultimately, our findings suggest that financial stability is a crucial consideration for low-income computing students as they contemplate their future goals. The participants’ responses demonstrate the importance of need-based financial aid and internship connections for low-income computing students. Furthermore, our findings indicate that intervention programs that aim to support low-income students’ career development should be more sensitive to the unique perspectives and financial concerns of low-income students when they promote graduate school and entrepreneurial pathways. 
    more » « less
  2. Prior scholarship on broadening participation in undergraduate computing education has made important contributions to supporting underrepresented students’ identity development and persistence. However, the specific experiences of low-income students are underexplored, and the critical juncture between undergraduate education and career or graduate school pathways are as well. For scholarship support programs to make a further impact on broadening participation in computing, it is critical to know low-income students’ viewpoints on the barriers, risks, and opportunities associated with different career pathways that influence their post-graduation plans. Our research seeks to better understand the future career pathway perceptions of low-income undergraduate computing students. We explore students’ perceptions of three specific pathways: pursuing a graduate degree, working for a large company, and becoming an entrepreneur. This study utilizes Bourdieu’s conception of economic capital, cultural capital, and social capital to understand low-income students’ perceptions of their future career pathways. This study is a part of a National Science Foundation-funded program that provides need-based scholarships, internship connections, research opportunities, and entrepreneurial education to low-income students pursuing a bachelor’s degree in computer science, information technology, cybersecurity, or computer engineering. The program includes three large, public universities in the Southeast United States and was launched in September 2021. We conducted semi-structured interviews with 16 participants from one of the participating universities to gather information about their perceptions of professional, graduate school, and entrepreneurial career pathways. The interviews were transcribed verbatim and analyzed using thematic coding. We found that the majority of our low-income participants plan to work for a large technology-focused company immediately after graduation. However, some participants indicated that the program’s scholarship, which covers up to two years of graduate education in a computing field, gives them the ability to consider pursuing a master’s degree between completing their bachelor’s degree and entering the workforce. Additionally, though many participants expressed that the idea of becoming an entrepreneur is appealing, the financial risks associated with entrepreneurship deter them from considering this career pathway themselves. Ultimately, our findings suggest that financial stability is a crucial consideration for low-income computing students as they contemplate their future goals. The participants’ responses demonstrate the importance of need-based financial aid and internship connections for low-income computing students. Furthermore, our findings indicate that intervention programs that aim to support low-income students’ career development should be more sensitive to the unique perspectives and financial concerns of low-income students when they promote graduate school and entrepreneurial pathways. 
    more » « less
  3. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  4. null (Ed.)
    The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programs with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic. 
    more » « less
  5. In higher education, faculty diversity is critical for a variety of important outcomes, including supporting students in pursuing and persisting in STEM fields by providing in-group role models. However, current engineering faculty do not equitably represent the general population. In order to address this lack of representation in higher education engineering programs, the University of Lowell S-STEM program has the goal to recruit three cohorts of low-income, high-achieving students who wish to pursue a career in higher education. The UML S-STEM program supports engineering scholars for four years, their last two years of undergraduate school and their first two years of graduate school. The goal of the program is to attract and retain diverse engineering S-STEM scholars and prepare them to enter the competitive pool of future faculty candidates. We present our successes and challenges in recruiting the first two cohorts of low-income, high-achieving students. In the first year, we focused on email blasts, a social media campaign, partnering with student groups, and general outreach via career panels. 55 eligible students were identified by the financial aid office, 12 applications received, and 4 students fit the timeline and eligibility requirements (all were accepted). Three of the four are first generation students, and three of the four identify as students from underrepresented minority backgrounds in engineering. Recruitment lessons learned were that because the scholarship opportunity is so unique, emails alone from a faculty member the students are not familiar with do not work well. Additionally, sophomores are often not proactively seeking more information and scholarship opportunities for graduate school. As a result of these findings, we increased our outreach opportunities to allow students to discuss and explore the benefits of graduate school to build the interest and self-efficacy of our target population. Further, we asked faculty members that work with the students to reach out to students individually and encourage them to apply. Using this approach, after identifying 79 eligible students, 38 applications were received, 84% from our list of eligible students, and 63% from populations underrepresented in engineering. 
    more » « less