IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.
more »
« less
Board 330: Iron Range Engineering Academic Scholarships for Co-Op Based Engineering Education
This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.
more »
« less
- Award ID(s):
- 2221441
- PAR ID:
- 10464409
- Date Published:
- Journal Name:
- Review directory American Society for Engineering Education
- ISSN:
- 0092-4326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program.more » « less
-
Innovative and Meaningful Mentoring to Enhance Retention, Success, and Engagement (IMMERSE) in STEM supports the retention and graduation of high-achieving, low- income students with demonstrated financial need at Skyline College, a two-year Hispanic Serving Institution situated in Silicon Valley, a hub of STEM innovation with many high-demand jobs. Over its 5-year duration, this project will fund 90 scholarships to at least 30 students who are advancing toward an associate degree or transfer to a four-year university to earn a degree in Biology, Biotechnology, Chemistry, Computer Science, Engineering, Mathematics, or Physics. IMMERSE in STEM is now in its second year and has supported 25 scholars, including 4 who have transferred to a 4-year university. All students receive up to three years of support. In addition to scholarships, the project incorporates a transformative approach to mentoring, and innovative supports intended to address financial and academic barriers. All participating students engage in a comprehensive set of evidence-based co-curricular services designed to support their persistence, completion, and transfer. Faculty mentors are trained on innovative and effective approaches to student retention and success, such as the implementation of ePortfolios. The overall goal of this project is to increase the STEM degree completion of low-income, high- achieving undergraduates with demonstrated financial need. There are three specific aims: 1) leverage existing high-impact, evidence-based processes already implemented on campus (such as ePortfolios and undergraduate research opportunities); 2) implement a cohesive multi-layer mentorship program to increase retention, student success, and graduation of scholars; 3) expand industry partnerships in association with workforce development programs to support the scholars’ academic and career opportunities with mentoring and internships. The high cost of attendance in the San Francisco Bay Area leads to high unmet financial needs, and leads students to seek part-time or full-time employment while they are in college. By combining financial assistance with specific practices, such as multi-tiered mentoring, ePortfolio adoption or participation in co-curricular activities, we have observed the impact on the retention and success rates of underrepresented minorities in STEM. This work is supported by the NSF S-STEM program under award number 2221696.more » « less
-
This S-STEM project addresses the national need for a well-educated engineering and computing workforce by supporting the retention and graduation of low-income students with demonstrated financial need and strong academic potential. The project focuses on creating pathways that allow students to progress from an associate's and bachelor's degree (at the regional campus) in technology to a bachelor's and possibly even a master's degree in engineering and computing at the main campus. This has been achieved by creating curricular pathways and providing infrastructure and support to encourage higher degree attainment by participating students while reducing graduation time. Over six years, this project aims to provide scholarships to 132 full-time students pursuing Associate, Bachelor's, and Master's degrees in Engineering, Computer Science, and related fields. So far, through this project, three cohorts of students have been recruited through a holistic review process, with recruitment strategies involving high school visits, outreach events, and collaborations with community colleges. As of Fall 2024, 45 students have been funded, with $256,125 in scholarships awarded. The diverse body of S-STEM scholars includes ~27% female, 11% African American/Black, 11% Asian, and ~7% Hispanic students. So far, ten students have graduated with a bachelor's degree who started with an associate's degree, and one student who started with an associate degree has completed a master's program. This supporting paper associated with the poster highlights the various aspects of this project, including recruitment strategies, curricular pathway development, cohort building, etc. We anticipate that this project will generate data on recruiting and retaining low-income, academically talented students, with findings related to fostering community and identity among scholarship recipients through mentoring and peer support, promoting excellent retention and workforce development.more » « less
-
null (Ed.)This poster showcases the progress of students who are receiving scholarships from the National Science Foundation S-STEM project: A Pathway to Completion for Pursuing Engineering and Engineering Technology Degrees. Thus far, 20 academically high-achieving students who demonstrate financial need have participated in the project. Thirty-six scholarships have been awarded to date, in which a maximum of twelve scholarships are awarded per semester; some students have received scholarships multiple times. Students are from electrical engineering, computer engineering, mechanical engineering, civil engineering, civil engineering technology, and modeling and simulation majors. As part of this S-STEM project, students also receive academic support, mentorship related to the development of professional workforce skills, career search skills, and opportunities to participate in industry-related field trips. Role models, many of whom are practicing engineers with STEM degrees and are military veterans, serve as presenters and share their personal career pathways and answer students’ questions in the required one-hour weekly seminar. Although the students participating in this project meet the strenuous academic criteria set by the project (3.0/4.0), many of the students struggle financially, due to having expended their G.I. benefits, which can impede their academic performance and graduation. While many student success programs focus on freshman and sophomore students, what makes this project unique is its focus on enabling student success at the junior and senior years. This project provides a portfolio of different activities for the more mature student, e.g. financial aid through scholarships, community-based learning opportunities, and academic success strategies that enable stronger retention and student completion rates. Project activities are tailored to veterans and adult learners as this group of students is particularly vulnerable given their need to simultaneously juggle academic, family, and financial obligations.more » « less
An official website of the United States government

