skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study
Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6 % (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693 % ,0.814 % ]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.  more » « less
Award ID(s):
1853562 1853622
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BMC Infectious Diseases
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter.Methods: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infections from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.Results: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan.Conclusions: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread. 
    more » « less
  2. Abstract Objective: Current guidance states that asymptomatic screening for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) prior to admission to an acute-care setting is at the facility’s discretion. This study’s objective was to estimate the number of undetected cases of SARS-CoV-2 admitted as inpatients under 4 testing approaches and varying assumptions. Design and setting: Individual-based microsimulation of 104 North Carolina acute-care hospitals Patients: All simulated inpatient admissions to acute-care hospitals from December 15, 2021, to January 13, 2022 [ie, during the SARS-COV-2 ο (omicron) variant surge]. Interventions: We simulated (1) only testing symptomatic patients, (2) 1-stage antigen testing with no confirmatory polymerase chain reaction (PCR) test, (3) 1-stage antigen testing with a confirmatory PCR for negative results, and (4) serial antigen screening (ie, repeat antigen test 2 days after a negative result). Results: Over 1 month, there were 77,980 admissions: 13.7% for COVID-19, 4.3% with but not for COVID-19, and 82.0% for non–COVID-19 indications without current infection. Without asymptomatic screening, 1,089 (credible interval [CI], 946–1,253) total SARS-CoV-2 infections (7.72%) went undetected. With 1-stage antigen screening, 734 (CI, 638–845) asymptomatic infections (67.4%) were detected, with 1,277 false positives. With combined antigen and PCR screening, 1,007 (CI, 875–1,159) asymptomatic infections (92.5%) were detected, with 5,578 false positives. A serial antigen testing policy detected 973 (CI, 845–1,120) asymptomatic infections (89.4%), with 2,529 false positives. Conclusions: Serial antigen testing identified >85% of asymptomatic infections and resulted in fewer false positives with less cost per identified infection compared to combined antigen plus PCR testing. 
    more » « less
  3. We propose a modified population-based susceptible-exposed-infectious-recovered (SEIR) compartmental model for a retrospective study of the COVID-19 transmission dynamics in India during the first wave. We extend the conventional SEIR methodology to account for the complexities of COVID-19 infection, its multiple symptoms, and transmission pathways. In particular, we consider a time-dependent transmission rate to account for governmental controls (e.g., national lockdown) and individual behavioral factors (e.g., social distancing, mask-wearing, personal hygiene, and self-quarantine). An essential feature of COVID-19 that is different from other infections is the significant contribution of asymptomatic and pre-symptomatic cases to the transmission cycle. A Bayesian method is used to calibrate the proposed SEIR model using publicly available data (daily new tested positive, death, and recovery cases) from several Indian states. The uncertainty of the parameters is naturally expressed as the posterior probability distribution. The calibrated model is used to estimate undetected cases and study different initial intervention policies, screening rates, and public behavior factors, that can potentially strike a balance between disease control and the humanitarian crisis caused by a sudden strict lockdown. 
    more » « less
  4. null (Ed.)
    Background: Our objective was to examine the temporal relationship between COVID-19 infections among prison staff, incarcerated individuals, and the general population in the county where the prison is located among federal prisons in the United States. Methods: We employed population-standardized regressions with fixed effects for prisons to predict the number of active cases of COVID-19 among incarcerated persons using data from the Federal Bureau of Prisons (BOP) for the months of March to December in 2020 for 63 prisons. Results: There is a significant relationship between the COVID-19 prevalence among staff, and through them, the larger community, and COVID-19 prevalence among incarcerated persons in the US federal prison system. When staff rates are low or at zero, COVID-19 incidence in the larger community continues to have an association with COVID-19 prevalence among incarcerated persons, suggesting possible pre-symptomatic and asymptomatic transmission by staff. Masking policies slightly reduced COVID-19 prevalence among incarcerated persons, though the association between infections among staff, the community, and incarcerated persons remained significant and strong. Conclusion: The relationship between COVID-19 infections among staff and incarcerated persons shows that staff is vital to infection control, and correctional administrators should also focus infection containment efforts on staff, in addition to incarcerated persons. 
    more » « less
  5. Eksin, Ceyhun (Ed.)
    We simulated epidemic projections of a potential COVID-19 outbreak in a residential university population in the United States under varying combinations of asymptomatic tests (5% to 33% per day), transmission rates (2.5% to 14%), and contact rates (1 to 25), to identify the contact rate threshold that, if exceeded, would lead to exponential growth in infections. Using this, we extracted contact rate thresholds among non-essential workers, population size thresholds in the absence of vaccines, and vaccine coverage thresholds. We further stream-lined our analyses to transmission rates of 5 to 8%, to correspond to the reported levels of face-mask-use/physical-distancing during the 2020 pandemic. Our results suggest that, in the absence of vaccines, testing alone without reducing population size would not be sufficient to control an outbreak. If the population size is lowered to 34% (or 44%) of the actual population size to maintain contact rates at 4 (or 7) among non-essential workers, mass tests at 25% (or 33%) per day would help control an outbreak. With the availability of vaccines, the campus can be kept at full population provided at least 95% are vaccinated. If vaccines are partially available such that the coverage is lower than 95%, keeping at full population would require asymptomatic testing, either mass tests at 25% per day if vaccine coverage is at 63–79%, or mass tests at 33% per day if vaccine coverage is at 53–68%. If vaccine coverage is below 53%, to control an outbreak, in addition to mass tests at 33% per day, it would also require lowering the population size to 90%, 75%, and 60%, if vaccine coverage is at 38–53%, 23–38%, and below 23%, respectively. Threshold estimates from this study, interpolated over the range of transmission rates, can collectively help inform campus level preparedness plans for adoption of face mask/physical-distancing, testing, remote instructions, and personnel scheduling, during non-availability or partial-availability of vaccines, in the event of SARS-Cov2-type disease outbreaks. 
    more » « less