skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Olfactory Sensing and Navigation in Turbulent Environments
Fluid turbulence is a double-edged sword for the navigation of macroscopic animals, such as birds, insects, and rodents. On the one hand, turbulence enables pheromone communication among mates and the possibility of locating food by their odors from long distances. Molecular diffusion would indeed be unable to spread odors over relevant distances in natural conditions. On the other hand, turbulent flows are hard to predict, and learning effective maneuvers to navigate them is challenging, as we discuss in this review. We first provide a summary of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an olfactory signal. A compendium of the dynamics of turbulent transport emphasizes those aspects that directly impact animals’ behavior. The state of the art on navigational strategies is discussed, followed by a concluding section dedicated to future challenges in the field.  more » « less
Award ID(s):
1764269
PAR ID:
10328862
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Condensed Matter Physics
Volume:
13
Issue:
1
ISSN:
1947-5454
Page Range / eLocation ID:
191 to 213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion. 
    more » « less
  2. In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is present at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice are capable of using changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcomes on the intermittency discrimination task as well as neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties. 
    more » « less
  3. null (Ed.)
    This Perspective highlights the shift from the classic picture of olfaction as slow and static to a view in which dynamics play a critical role at many levels of sensing and behavior. Olfaction is now increasingly seen as a “wide-bandwidth temporal sense” (Ackels et al., 2021; Nagel et al., 2015). A parallel transition is occurring in odor-guided robot navigation, where it has been discovered that sensors can access temporal cues useful for navigation (Schmuker et al., 2016). We are only beginning to understand the implications of this paradigm-shift on our view of olfactory and olfacto-motor circuits. Below we review insights into the information encoded in turbulent odor plumes and shine light on how animals could access this information. We suggest that a key challenge for olfactory neuroscience is to re-interpret work based on static stimuli in the context of natural odor dynamics and actively exploring animals. 
    more » « less
  4. In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties. 
    more » « less
  5. Learned olfactory-guided navigation is a powerful platform for studying how a brain generates goal-directed behaviors. However, the quantitative changes that occur in sensorimotor transformations and the underlying neural circuit substrates to generate such learning-dependent navigation is still unclear. Here we investigate learned sensorimotor processing for navigation in the nematodeCaenorhabditis elegansby measuring and modeling experience-dependent odor and salt chemotaxis. We then explore the neural basis of learned odor navigation through perturbation experiments. We develop a novel statistical model to characterize how the worm employs two behavioral strategies: a biased random walk and weathervaning. We infer weights on these strategies and characterize sensorimotor kernels that govern them by fitting our model to the worm’s time-varying navigation trajectories and precise sensory experiences. After olfactory learning, the fitted odor kernels reflect how appetitive and aversive trained worms up- and down-regulate both strategies, respectively. The model predicts an animal’s past olfactory learning experience with  > 90%accuracy given finite observations, outperforming a classical chemotaxis metric. The model trained on natural odors further predicts the animals’ learning-dependent response to optogenetically induced odor perception. Our measurements and model show that behavioral variability is altered by learning—trained worms exhibit less variable navigation than naive ones. Genetically disrupting individual interneuron classes downstream of an odor-sensing neuron reveals that learned navigation strategies are distributed in the network. Together, we present a flexible navigation algorithm that is supported by distributed neural computation in a compact brain. 
    more » « less