skip to main content

Title: The Effects of Humidity on Spontaneous Cocrystallization: A Survey of Diacid Cocrystals with Caffeine, Theophylline, and Nicotinamide
Pharmaceutical cocrystals comprise one active pharmaceutical ingredient (API) and at least one small molecule excipient coformer. While solvent evaporation and mechanochemistry are the preferred methods for their synthesis, some cocrystals are known to form spontaneously at ambient conditions when powders of input materials are mixed—a process not yet fully understood. Aqueous humidity is also known to accelerate spontaneous cocrystal formation. We report here the extent of spontaneous cocrystallization for 14 cocrystal systems, at four levels of humidity. The binary cocrystals in our study consist of a model API (caffeine, theophylline, nicotinamide) and a small chain diacid coformer (oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid). The spontaneous cocrystal formation was monitored ex situ by powder X-ray diffraction over several weeks. Our results show cocrystal formation in all 14 systems to varying extent and are consistent with literature reports that higher humidity correlates with more rapid cocrystal formation. We find that cocrystals containing smaller coformers often form faster. Based on our findings, we identify several cocrystals as candidates for future study.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Chemical Crystallography
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Competitive milling (CM) and stability milling (SM) mechanochemical reactions are used to comprehensively assess the relative thermodynamic stabilities and cocrystallization affinities of three pharmaceutical cocrystals (PCCs) of fluoxetine HCl ( X ) with three different pharmaceutically acceptable coformers (PACs, i.e. , benzoic acid ( B ), fumaric acid ( F ), and succinic acid ( S )). CM reactions, which involve milling X in the presence of two or more different PACs, were used to determine cocrystallization affinities, whereas SM reactions, which involve milling a PCC of X with a different coformer, were used to determine relative thermodynamic stabilities. In certain cases, SM reactions exhibited a remarkable solid-state exchange of coformers, yielding new cocrystalline forms. 35 Cl (spin I = 3/2) SSNMR is used as the primary probe of the products of CM and SM reactions, providing a reliable means of identifying and quantifying chloride ions in unique hydrogen bonding environments in each reaction mixture ( 13 C SSNMR spectra and pXRD patterns are used in support of these data). On the basis of these reactions and data, the PAC cocrystallization affinities with X are B > F ≈ S (most to least preferred), and the PCC stabilities are XB > X 2 F ≈ X 2 S (most to least preferred), corresponding to enthalpies of cocrystallization ranked as Δ H CCXB < ≈ . PAC affinities and PCC stabilities were found to be the same for products of analogous slow evaporation experiments and mechanochemical reactions with extended milling times ( i.e. , 90 minutes). Preliminary plane-wave DFT-D2* calculations are supportive of cocrystal formation; however, challenges remain for the quantification of relative enthalpies of cocrystallization. This work demonstrates the great potential of CM and SM reactions for providing pathways to the rational design, discovery, and manufacture of new cocrystalline forms of APIs. 
    more » « less
  2. Structures of three cocrystals of nootropic racetams were studied. They included two cocrystals of phenylpiracetam (PPA) with 4-hydroxybenzoic acid (HBA) with different stoichiometries, PPA·HBA and PPA·2HBA, and cocrystal of 2-(4-phenyl-2-oxopyrrolidin-1-yl)-N’-isopropylideneacetohydrazide (PPAH) with 4-hydroxybenzamide (HBD), PPAH·HBD·(acetone solvate). X-ray study of the pure forms of PPA and PPAH was also carried out to identify variations of molecular synthons under the influence of conformers. The cocrystal structures revealed the diversity of supramolecular synthons namely, amide-amide, amide-acid, acid-acid, and hydroxyl-hydroxyl; however, very similar molecular chains were found in PPA and PPA·2HBA, and similar molecular dimers in PPAH and PPAH·HBD. In addition, conformational molecular diversity was observed as disorder in PPA·2HBA as it was observed earlier for rac-PPA that allows for the consideration that cocrystal as an example of partial solid solution. Quantum chemical calculations of PPA and PPAH conformers demonstrated that for most conformers, energy differences do not exceed 2 kcal/mol that suggests the influence of packing conditions (in this case R- and S-enantiomers intend to occupy the same molecular position in crystal) on molecular conformation. 
    more » « less
  3. Abstract

    The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2V−1s1being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.

    more » « less
  4. Abstract STUDY QUESTION

    To what extent is male fatty acid intake associated with fecundability among couples planning pregnancy?


    We observed weak positive associations of male dietary intakes of total and saturated fatty acids with fecundability; no other fatty acid subtypes were appreciably associated with fecundability.


    Male fatty acid intake has been associated with semen quality in previous studies. However, little is known about the extent to which male fatty acid intake is associated with fecundability among couples attempting spontaneous conception.


    We conducted an internet-based preconception prospective cohort study of 697 couples who enrolled during 2015–2022. During 12 cycles of observation, 53 couples (7.6%) were lost to follow-up.


    Participants were residents of the USA or Canada, aged 21–45 years, and not using fertility treatment at enrollment. At baseline, male participants completed a food frequency questionnaire from which we estimated intakes of total fat and fatty acid subtypes. We ascertained time to pregnancy using questionnaires completed every 8 weeks by female participants until conception or up to 12 months. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% CIs for the associations of fat intakes with fecundability, adjusting for male and female partner characteristics. We used the multivariate nutrient density method to account for energy intake, allowing for interpretation of results as fat intake replacing carbohydrate intake. We conducted several sensitivity analyses to assess the potential for confounding, selection bias, and reverse causation.


    Among 697 couples, we observed 465 pregnancies during 2970 menstrual cycles of follow-up. The cumulative incidence of pregnancy during 12 cycles of follow-up after accounting for censoring was 76%. Intakes of total and saturated fatty acids were weakly, positively associated with fecundability. Fully adjusted FRs for quartiles of total fat intake were 1.32 (95% CI 1.01–1.71), 1.16 (95% CI 0.88–1.51), and 1.43 (95% CI 1.09–1.88) for the second, third, and fourth vs the first quartile, respectively. Fully adjusted FRs for saturated fatty acid intake were 1.21 (95% CI 0.94–1.55), 1.16 (95% CI 0.89–1.51), and 1.23 (95% CI 0.94–1.62) for the second, third, and fourth vs the first quartile, respectively. Intakes of monounsaturated, polyunsaturated, trans-, omega-3, and omega-6 fatty acids were not strongly associated with fecundability. Results were similar after adjustment for the female partner’s intakes of trans- and omega-3 fats.


    Dietary intakes estimated from the food frequency questionnaire may be subject to non-differential misclassification, which is expected to bias results toward the null in the extreme categories when exposures are modeled as quartiles. There may be residual confounding by unmeasured dietary, lifestyle, or environmental factors. Sample size was limited, especially in subgroup analyses.


    Our results do not support a strong causal effect of male fatty acid intakes on fecundability among couples attempting to conceive spontaneously. The weak positive associations we observed between male dietary fat intakes and fecundability may reflect a combination of causal associations, measurement error, chance, and residual confounding.


    The study was funded by the National Institutes of Health, grant numbers R01HD086742 and R01HD105863. In the last 3 years, PRESTO has received in-kind donations from Swiss Precision Diagnostics (home pregnancy tests) and (fertility app). L.A.W. is a consultant for AbbVie, Inc. M.L.E. is an advisor to Sandstone, Ro, Underdog, Dadi, Hannah, Doveras, and VSeat. The other authors have no competing interests to report.



    more » « less
  5. The rapid evaporation of 1:1 solutions of diethynylpyridines and N -halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted 1:1 cocrystals of the two components. The 1:1 cocrystal formed between 2,6-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) contains an N -iodosuccinimide–pyridine I...N halogen bond and two terminal alkyne–succinimide carbonyl C—H...O hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) also features an I...N halogen bond and two C—H...O hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide (C 4 H 4 BrNO 2 ·C 9 H 5 N) is isomorphous to the cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide, with a Br...N halogen bond instead of an I...N halogen bond. 
    more » « less