Abstract Cocrystallizations of diboronic acids [1,3‐benzenediboronic acid (1,3‐bdba), 1,4‐benzenediboronic acid (1,4‐bdba) and 4,4’‐biphenyldiboronic acid (4,4’‐bphdba)] and bipyridines [1,2‐bis(4‐pyridyl)ethylene (bpe) and 1,2‐bis(4‐pyridyl)ethane (bpeta)] generated the hydrogen‐bonded 1 : 2 cocrystals [(1,4‐bdba)(bpe)2] (1), [(1,4‐bdba)(bpeta)2] (2), [(1,3‐bdba)(bpe)2(H2O)2] (3) and [(1,3‐bdba)(bpeta)2(H2O)] (4), wherein 1,3‐bdba involved hydrated assemblies. The linear extended 4,4’‐bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'‐bphdba)(bpe)] (5) and [(4,4'‐bphdba‐me)(bpeta)] (6). For 6, a hemiester was generated by an in‐situ linker transformation. Single‐crystal X‐ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen‐bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D‐to‐2D single‐crystal‐to‐single‐crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.
more »
« less
The Effects of Humidity on Spontaneous Cocrystallization: A Survey of Diacid Cocrystals with Caffeine, Theophylline, and Nicotinamide
Pharmaceutical cocrystals comprise one active pharmaceutical ingredient (API) and at least one small molecule excipient coformer. While solvent evaporation and mechanochemistry are the preferred methods for their synthesis, some cocrystals are known to form spontaneously at ambient conditions when powders of input materials are mixed—a process not yet fully understood. Aqueous humidity is also known to accelerate spontaneous cocrystal formation. We report here the extent of spontaneous cocrystallization for 14 cocrystal systems, at four levels of humidity. The binary cocrystals in our study consist of a model API (caffeine, theophylline, nicotinamide) and a small chain diacid coformer (oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid). The spontaneous cocrystal formation was monitored ex situ by powder X-ray diffraction over several weeks. Our results show cocrystal formation in all 14 systems to varying extent and are consistent with literature reports that higher humidity correlates with more rapid cocrystal formation. We find that cocrystals containing smaller coformers often form faster. Based on our findings, we identify several cocrystals as candidates for future study.
more »
« less
- Award ID(s):
- 2100582
- PAR ID:
- 10328901
- Date Published:
- Journal Name:
- Journal of Chemical Crystallography
- ISSN:
- 1074-1542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structures of three cocrystals of nootropic racetams were studied. They included two cocrystals of phenylpiracetam (PPA) with 4-hydroxybenzoic acid (HBA) with different stoichiometries, PPA·HBA and PPA·2HBA, and cocrystal of 2-(4-phenyl-2-oxopyrrolidin-1-yl)-N’-isopropylideneacetohydrazide (PPAH) with 4-hydroxybenzamide (HBD), PPAH·HBD·(acetone solvate). X-ray study of the pure forms of PPA and PPAH was also carried out to identify variations of molecular synthons under the influence of conformers. The cocrystal structures revealed the diversity of supramolecular synthons namely, amide-amide, amide-acid, acid-acid, and hydroxyl-hydroxyl; however, very similar molecular chains were found in PPA and PPA·2HBA, and similar molecular dimers in PPAH and PPAH·HBD. In addition, conformational molecular diversity was observed as disorder in PPA·2HBA as it was observed earlier for rac-PPA that allows for the consideration that cocrystal as an example of partial solid solution. Quantum chemical calculations of PPA and PPAH conformers demonstrated that for most conformers, energy differences do not exceed 2 kcal/mol that suggests the influence of packing conditions (in this case R- and S-enantiomers intend to occupy the same molecular position in crystal) on molecular conformation.more » « less
-
Abstract Control over thermal expansion (TE) behaviors in solid materials is often accomplished by modifying the molecules or intermolecular interactions within the solid. Here, we use a mixed cocrystal approach and incorporate molecules with similar chemical structures, but distinct functionalities. Development of mixed cocrystals is at a nascent stage, and here we describe the first mixed cocrystals sustained by one‐dimensional halogen bonds. Within each mixed cocrystal, the halogen‐bond donor is fixed, while the halogen‐bond acceptor site contains two molecules in a variable ratio. X‐ray diffraction demonstrates isostructurality across the series, and SEM‐EDS shows equal distribution of heavy atoms and similar atomic compositions across all mixed cocrystals. The acceptor molecules differ in their ability to undergo dynamic motion in the solid state. The synthetic equivalents of motion capable and incapable molecules were systematically varied to yield direct tunabililty in TE behavior.more » « less
-
The rapid evaporation of 1:1 solutions of diethynylpyridines and N -halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted 1:1 cocrystals of the two components. The 1:1 cocrystal formed between 2,6-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) contains an N -iodosuccinimide–pyridine I...N halogen bond and two terminal alkyne–succinimide carbonyl C—H...O hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) also features an I...N halogen bond and two C—H...O hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide (C 4 H 4 BrNO 2 ·C 9 H 5 N) is isomorphous to the cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide, with a Br...N halogen bond instead of an I...N halogen bond.more » « less
-
The potential of pyrimidines to serve as ditopic halogen-bond acceptors is explored. The halogen-bonded cocrystals formed from solutions of either 5,5′-bipyrimidine (C 8 H 6 N 4 ) or 1,2-bis(pyrimidin-5-yl)ethyne (C 10 H 6 N 4 ) and 2 molar equivalents of 1,3-diiodotetrafluorobenzene (C 6 F 4 I 2 ) have a 1:1 composition. Each pyrimidine moiety acts as a single halogen-bond acceptor and the bipyrimidines act as ditopic halogen-bond acceptors. In contrast, the activated pyrimidines 2- and 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine (C 14 H 13 N 3 ) are ditopic halogen-bond acceptors, and 1:1 halogen-bonded cocrystals are formed from 1:1 mixtures of each of the activated pyrimidines and either 1,2- or 1,3-diiodotetrafluorobenzene. A 1:1 cocrystal was also formed between 2-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene, while a 2:1 cocrystal was formed between 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene.more » « less
An official website of the United States government

