skip to main content


Title: Mechanics and dynamics of translocating MreB filaments on curved membranes
MreB is an actin homolog that is essential for coordinating the cell wall synthesis required for the rod shape of many bacteria. Previously we have shown that filaments of MreB bind to the curved membranes of bacteria and translocate in directions determined by principal membrane curvatures to create and reinforce the rod shape (Hussain et al., 2018). Here, in order to understand how MreB filament dynamics affects their cellular distribution, we model how MreB filaments bind and translocate on membranes with different geometries. We find that it is both energetically favorable and robust for filaments to bind and orient along directions of largest membrane curvature. Furthermore, significant localization to different membrane regions results from processive MreB motion in various geometries. These results demonstrate that the in vivo localization of MreB observed in many different experiments, including those examining negative Gaussian curvature, can arise from translocation dynamics alone.  more » « less
Award ID(s):
1764269
NSF-PAR ID:
10328944
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
eLife
Volume:
8
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Derré, Isabelle (Ed.)
    Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis . In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of 6xHis tagged Cls (Cls_6xH) throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3’,6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls_6xH and NAO-staining phospholipids. In addition, 6xHis tagged MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls_6xH is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C . trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia . 
    more » « less
  2. Abstract

    The actin-like protein MreB has been proposed to coordinate the synthesis of the cell wall to determine cell shape in bacteria. MreB is preferentially localized to areas of the cell with specific curved geometries, avoiding the cell poles. It remains unclear whether MreB’s curvature preference is regulated by additional factors, and which specific features of MreB promote specific features of rod shape growth. Here, we show that the transmembrane protein RodZ modulates MreB curvature preference and polymer number inE. coli, properties which are regulated independently. An unbiased machine learning analysis shows that MreB polymer number, the total length of MreB polymers, and MreB curvature preference are key correlates of cylindrical uniformity, the variability in radius within a single cell. Changes in the values of these parameters are highly predictive of the resulting changes in cell shape (r2 = 0.93). Our data thus suggest RodZ promotes the assembly of geometrically-localized MreB polymers that lead to the growth of uniform cylinders.

     
    more » « less
  3. Dynamic organization of the cytoskeletal filaments and rod-like proteins in the cell membrane and other biological interfaces occurs in many cellular processes. Previous modeling studies have considered the dynamics of a single rod on fluid planar membranes. We extend these studies to the more physiologically relevant case of a single filament moving in a spherical membrane. Specifically, we use a slender-body formulation to compute the translational and rotational resistance of a single filament of length L moving in a membrane of radius R and 2D viscosity ηm, and surrounded on its interior and exterior with Newtonian fluids of viscosities η− and η+. We first discuss the case where the filament's curvature is at its minimum κ=1/R. We show that the boundedness of spherical geometry gives rise to flow confinement effects that increase in strength with increasing the ratio of filament's length to membrane radius L/R. These confinement flows only result in a mild increase in filament's resistance along its axis, ξ∥, and its rotational resistance, ξΩ. As a result, our predictions of ξ∥ and ξΩ can be quantitatively mapped to the results on a planar membrane. In contrast, we find that the drag in perpendicular direction, ξ⊥, increases superlinearly with the filament's length, when L/R>1 and ultimately ξ⊥→∞ as L/R→π. Next, we consider the effect of the filament's curvature, κ, on its parallel motion, while fixing the membrane's radius. We show that the flow around the filament becomes increasingly more asymmetric with increasing its curvature. These flow asymmetries induce a net torque on the filament, coupling its parallel and rotational dynamics. This coupling becomes stronger with increasing L/R and κ. 
    more » « less
  4. ABSTRACT Many bacteria utilize actin-like proteins to direct peptidoglycan (PG) synthesis. MreB and MreB-like proteins are thought to act as scaffolds, guiding the localization and activity of key PG-synthesizing proteins during cell elongation. Despite their critical role in viability and cell shape maintenance, very little is known about how the activity of MreB family proteins is regulated. Using a Bacillus subtilis misexpression screen, we identified two genes, yodL and yisK , that when misexpressed lead to loss of cell width control and cell lysis. Expression analysis suggested that yodL and yisK are previously uncharacterized Spo0A-regulated genes, and consistent with these observations, a Δ yodL Δ yisK mutant exhibited reduced sporulation efficiency. Suppressors resistant to YodL's killing activity occurred primarily in mreB mutants and resulted in amino acid substitutions at the interface between MreB and the highly conserved morphogenic protein RodZ, whereas suppressors resistant to YisK occurred primarily in mbl mutants and mapped to Mbl's predicted ATP-binding pocket. YodL's shape-altering activity appears to require MreB, as a Δ mreB mutant was resistant to the effects of YodL but not YisK. Similarly, YisK appears to require Mbl, as a Δ mbl mutant was resistant to the cell-widening effects of YisK but not of YodL. Collectively, our results suggest that YodL and YisK likely modulate MreB and Mbl activity, possibly during the early stages of sporulation. IMPORTANCE The peptidoglycan (PG) component of the cell envelope confers structural rigidity to bacteria and protects them from osmotic pressure. MreB and MreB-like proteins are thought to act as scaffolds for PG synthesis and are essential in bacteria exhibiting nonpolar growth. Despite the critical role of MreB-like proteins, we lack mechanistic insight into how their activities are regulated. Here, we describe the discovery of two B. subtilis proteins, YodL and YisK, which modulate MreB and Mbl activities. Our data suggest that YodL specifically targets MreB, whereas YisK targets Mbl. The apparent specificities with which YodL and YisK are able to differentially target MreB and Mbl make them potentially powerful tools for probing the mechanics of cytoskeletal function in bacteria. 
    more » « less
  5. null (Ed.)
    We use theory and numerical computation to determine the shape of an axisymmetric fluid membrane with a resistance to bending and constant area. The membrane connects two rings in the classic geometry that produces a catenoidal shape in a soap film. In our problem, we find infinitely many branches of solutions for the shape and external force as functions of the separation of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable separation when the area is less than a critical area equal to the planar area enclosed by the two rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the stability of catenoidal soap films in this regime. When the membrane area is larger than the critical area, we find additional cylindrical tether solutions to the shape equations at large ring separation, and that arbitrarily large ring separations are possible. These results apply for the case of vanishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the area is below the critical area, the force and the membrane tension diverge as the ring separation approaches its maximum value. We also examine the stability of our shapes and analytically show that catenoidal membranes have markedly different stability properties than their soap film counterparts. 
    more » « less