skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodynamics of a single filament moving in a fluid spherical membrane
Dynamic organization of the cytoskeletal filaments and rod-like proteins in the cell membrane and other biological interfaces occurs in many cellular processes. Previous modeling studies have considered the dynamics of a single rod on fluid planar membranes. We extend these studies to the more physiologically relevant case of a single filament moving in a spherical membrane. Specifically, we use a slender-body formulation to compute the translational and rotational resistance of a single filament of length L moving in a membrane of radius R and 2D viscosity ηm, and surrounded on its interior and exterior with Newtonian fluids of viscosities η− and η+. We first discuss the case where the filament's curvature is at its minimum κ=1/R. We show that the boundedness of spherical geometry gives rise to flow confinement effects that increase in strength with increasing the ratio of filament's length to membrane radius L/R. These confinement flows only result in a mild increase in filament's resistance along its axis, ξ∥, and its rotational resistance, ξΩ. As a result, our predictions of ξ∥ and ξΩ can be quantitatively mapped to the results on a planar membrane. In contrast, we find that the drag in perpendicular direction, ξ⊥, increases superlinearly with the filament's length, when L/R>1 and ultimately ξ⊥→∞ as L/R→π. Next, we consider the effect of the filament's curvature, κ, on its parallel motion, while fixing the membrane's radius. We show that the flow around the filament becomes increasingly more asymmetric with increasing its curvature. These flow asymmetries induce a net torque on the filament, coupling its parallel and rotational dynamics. This coupling becomes stronger with increasing L/R and κ.  more » « less
Award ID(s):
1944156
PAR ID:
10318632
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many of the cell membrane's vital functions are achieved by the self-organization of the proteins and biopolymers embedded in it. The protein dynamics is in part determined by its drag. A large number of these proteins can polymerize to form filaments.In vitrostudies of protein–membrane interactions often involve using rigid beads coated with lipid bilayers, as a model for the cell membrane. Motivated by this, we use slender-body theory to compute the translational and rotational resistance of a single filamentous protein embedded in the outer layer of a supported bilayer membrane and surrounded on the exterior by a Newtonian fluid. We first consider the regime where the two layers are strongly coupled through their inter-leaflet friction. We find that the drag along the parallel direction grows linearly with the filament's length and quadratically with the length for the perpendicular and rotational drag coefficients. These findings are explained using scaling arguments and by analysing the velocity fields around the moving filament. We then present and discuss the qualitative differences between the drag of a filament moving in a freely suspended bilayer and a supported membrane as a function of the membrane's inter-leaflet friction. Finally, we briefly discuss how these findings can be used in experiments to determine membrane rheology. In summary, we present a formulation that allows computation of the effects of membrane properties (its curvature, viscosity and inter-leaflet friction), and the exterior and interior three-dimensional fluids’ depth and viscosity on the drag of a rod-like/filamentous protein, all in a unified theoretical framework. 
    more » « less
  2. Using a combination of theory and experiments we study the interface between two immiscible domains in a colloidal membrane composed of rigid rods of different lengths. Geometric considerations of rigid rod packing imply that a domain of sufficiently short rods in a background membrane of long rods is more susceptible to twist than the inverse structure, a long-rod domain in a short-rod membrane background. The tilt at the inter-domain edge forces splay, which in turn manifests as a spontaneous edge curvature whose energetics are controlled by the length asymmetry of constituent rods. A thermodynamic model of such tilt-curvature coupling at inter-domain edges explains a number of experimental observations, including a non-monotonic dependence of the edge twist on the domain radius, and annularly shaped domains of long rods. Our work shows how coupling between orientational and compositional degrees of freedom in two-dimensional fluids give rise to complex shapes and thermodynamics of domains, analogous to shape transitions in 3D fluid vesicles. 
    more » « less
  3. null (Ed.)
    Random knot models are often used to measure the types of entanglements one would expect to observe in an unbiased system with some given physical property or set of properties. In nature, macromolecular chains often exist in extreme confinement. Current techniques for sampling random polygons in confinement are limited. In this paper, we gain insight into the knotting behavior of random polygons in extreme confinement by studying random polygons restricted to cylinders, where each edge connects the top and bottom disks of the cylinder. The knot spectrum generated by this model is compared to the knot spectrum of rooted equilateral random polygons in spherical confinement. Due to the rooting, such polygons require a radius of confinement R ⩾ 1. We present numerical evidence that the polygons generated by this simple cylindrical model generate knot probabilities that are equivalent to spherical confinement at a radius of R ≈ 0.62. We then show how knot complexity and the relative probability of different classes of knot types change as the length of the polygon increases in the cylindrical polygons. 
    more » « less
  4. Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to curved membranes. However, predicting how the physical parameters of these domains control this ‘curvature sensing’ behavior is challenging due to the local membrane deformations generated by the nanoscopic helix on the surface of a large sphere. We here use a deformable continuum model that accounts for the physical properties of the membrane and the helix insertion to predict curvature sensing behavior, with direct validation against multiple experimental datasets. We show that the insertion can be modeled as a local change to the membrane's spontaneous curvature, c ins0, producing excellent agreement with the energetics extracted from experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an empirical expression that accurately captures numerically calculated membrane energies as a function of both basic membrane properties (bending modulus κ and radius R ) as well as stresses applied by the inserted helix ( c ins0 and area A ins ). We therefore predict how these physical parameters will alter the energetics of helix binding to curved vesicles, which is an essential step in understanding their localization dynamics during membrane remodeling processes. 
    more » « less
  5. Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such asEscherichia coliby directing cell-wall synthesis according to local curvature cues. However, the basis of MreB’s curvature-dependent localization has remained elusive. Here, we develop a biophysical model for the energetics of a filament binding to a surface that integrates the complex interplay between filament twist and bending and the two-dimensional surface geometry. Our model predicts that the spatial localization of a filament like MreB with substantial intrinsic twist is governed by both the mean and Gaussian curvatures of the cell envelope, which strongly covary in rod-shaped cells. Using molecular dynamics simulations to estimate the mechanical properties of MreB filaments, we show that their thermodynamic preference for regions with lower mean and Gaussian curvatures matches experimental observations for physiologically relevant filament lengths of ~50 nm. We find that the experimentally measured statistical curvature preference is maintained in the absence of filament motion and after a cycle of depolymerization, repolymerization, and membrane rebinding, indicating that equilibrium energetics can explain MreB localization. These findings provide critical insights into the physical principles underlying cytoskeletal filament localization and suggest design principles for synthetic shape-sensing nanomaterials. 
    more » « less