skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovering a sparse set of pairwise discriminating features in high-dimensional data
Abstract Motivation Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. Results We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. Availability and implementation https://github.com/smelton/SMD. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1764269
PAR ID:
10328966
Author(s) / Creator(s):
;
Editor(s):
Luigi Martelli, Pier
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
2
ISSN:
1367-4803
Page Range / eLocation ID:
202 to 212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Echinoderms represent a broad phylum with many tractable features to test evolutionary changes and constraints. Here, we present a single-cell RNA-sequencing analysis of early development in the sea star Patiria miniata, to complement the recent analysis of two sea urchin species. We identified 20 cell states across six developmental stages from 8 hpf to mid-gastrula stage, using the analysis of 25,703 cells. The clusters were assigned cell states based on known marker gene expression and by in situ RNA hybridization. We found that early (morula, 8-14 hpf) and late (blastula-to-mid-gastrula) cell states are transcriptionally distinct. Cells surrounding the blastopore undergo rapid cell state changes that include endomesoderm diversification. Of particular import to understanding germ cell specification is that we never see Nodal pathway members within Nanos/Vasa-positive cells in the region known to give rise to the primordial germ cells (PGCs). The results from this work contrast the results of PGC specification in the sea urchin, and the dataset presented here enables deeper comparative studies in tractable developmental models for testing a variety of developmental mechanisms. 
    more » « less
  2. Abstract Recent advances in biochemistry and single-cell RNA sequencing (scRNA-seq) have allowed us to monitor the biological systems at the single-cell resolution. However, the low capture of mRNA material within individual cells often leads to inaccurate quantification of genetic material. Consequently, a significant amount of expression values are reported as missing, which are often referred to as dropouts. To overcome this challenge, we develop a novel imputation method, named single-cell Imputation via Subspace Regression (scISR), that can reliably recover the dropout values of scRNA-seq data. The scISR method first uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and then estimates the dropout values using a subspace regression model. Our comprehensive evaluation using 25 publicly available scRNA-seq datasets and various simulation scenarios against five state-of-the-art methods demonstrates that scISR is better than other imputation methods in recovering scRNA-seq expression profiles via imputation. scISR consistently improves the quality of cluster analysis regardless of dropout rates, normalization techniques, and quantification schemes. The source code of scISR can be found on GitHub at https://github.com/duct317/scISR . 
    more » « less
  3. Birol, Inanc (Ed.)
    Abstract MotivationSingle-cell RNA sequencing (scRNA-seq) is widely used for analyzing gene expression in multi-cellular systems and provides unprecedented access to cellular heterogeneity. scRNA-seq experiments aim to identify and quantify all cell types present in a sample. Measured single-cell transcriptomes are grouped by similarity and the resulting clusters are mapped to cell types based on cluster-specific gene expression patterns. While the process of generating clusters has become largely automated, annotation remains a laborious ad hoc effort that requires expert biological knowledge. ResultsHere, we introduce CellMeSH—a new automated approach to identifying cell types for clusters based on prior literature. CellMeSH combines a database of gene–cell-type associations with a probabilistic method for database querying. The database is constructed by automatically linking gene and cell-type information from millions of publications using existing indexed literature resources. Compared to manually constructed databases, CellMeSH is more comprehensive and is easily updated with new data. The probabilistic query method enables reliable information retrieval even though the gene–cell-type associations extracted from the literature are noisy. CellMeSH is also able to optionally utilize prior knowledge about tissues or cells for further annotation improvement. CellMeSH achieves top-one and top-three accuracies on a number of mouse and human datasets that are consistently better than existing approaches. Availability and implementationWeb server at https://uncurl.cs.washington.edu/db_query and API at https://github.com/shunfumao/cellmesh. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. null (Ed.)
    Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology. 
    more » « less
  5. ABSTRACT: Motivation Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover, single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra (e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another challenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data. Results Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select informative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods, scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it enables the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell types. We demonstrate that scPNMF outperforms the state-of-the-art gene selection methods on diverse scRNA-seq datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-type annotation on targeted gene profiling data. Availability and implementation The R package is open-access and available at https://github.com/JSB-UCLA/scPNMF. The data used in this work are available at Zenodo: https://doi.org/10.5281/zenodo.4797997. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less