- Award ID(s):
- 1757351
- NSF-PAR ID:
- 10329017
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 158
- Issue:
- 2
- ISSN:
- 0168-2563
- Page Range / eLocation ID:
- 251 to 268
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Nitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N 2 O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N 2 O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N 2 O yields between 0.18 and 0.41 ng N 2 O–N per µg NO x –N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral part of the nitrogen cycle in a highly fertile agricultural soil.more » « less
-
Abstract Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates and
δ 15N values were also determined. Denitrification rates and soilδ 15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management. -
Hydrogeologic Controls of Surface Water‐Groundwater Nitrogen Dynamics Within a Tidal Freshwater Zone
Abstract Microbial processing of reactive nitrogen in stream sediments and connected aquifers can remove and transform nitrogen prior to its discharge into coastal waters, decreasing the likelihood of harmful algal blooms and low oxygen levels in estuaries. Canonical wisdom points to the decreased capacity of rivers to retain nitrogen as they flow toward the coast. However, how tidal freshwater zones, which often extend hundreds of kilometers inland, process and remove nitrogen remains unknown. Using geochemical measurements and numerical models, we show that tidal pumping results in the rapid cycling of nitrogen within distinct zones throughout the riparian aquifer. Near the fluctuating water table nitrification dominates, with high nitrate concentrations (>10 mg N/L) and consistent isotopic composition. Beneath this zone, isotopes reveal that nitrate is both denitrified and added over the tidal cycle, maintaining nitrate concentrations >3–4 mg N/L. In most of the riparian aquifer and streambed, nitrate concentrations are <0.5 mg N/L, suggesting denitrification dominates. Model results reveal that oxygen delivery to groundwater from the overlying unsaturated soil fuels mineralization and nitrification, with subsequent denitrification in low‐oxygen, high organic matter regions. Depending on flow paths, tidal freshwater zones could be sources of nitrate in regions with permeable sediment and low organic matter content.
-
Abstract Wildfires may increase soil emissions of trace nitrogen (N) gases like nitric oxide (NO) and nitrous oxide (N2O) by changing soil physicochemical conditions and altering microbial processes like nitrification and denitrification. When 34 studies were synthesized, we found a significant increase in both NO and N2O emissions up to 1 year post-fire across studies spanning ecosystems globally. However, when fluxes were separated by ecosystem type, we found that individual ecosystem types responded uniquely to fire. Forest soils tended to emit more N2O after fire, but there was no significant effect on NO. Shrubland soils showed significant increases in both NO and N2O emissions after fires; often with extremely large but short-lived NO pulses occurring immediately after fire. Grassland NO emissions increased after fire, but the size of this effect was small relative to shrublands. N2O emissions from burned grasslands were highly variable with no significant effect. To better understand the variation in responses to fire across global ecosystems, more consistent measurements of variables recognized as important controls on soil fluxes of NO and N2O (e.g., N cycling rates, soil water content, pH, and substrate availability) are needed across studies. We also suggest that fire-specific elements like burn severity, microbial community succession, and the presence of char be considered by future studies. Our synthesis suggests that fires can exacerbate ecosystem N loss long after they burn, increasing soil emissions of NO and N2O with implications for ecosystem N loss, climate, and regional air quality as wildfires increase globally.
-
Abstract Due to the heterogeneous nature of soil pore structure, processes such as nitrification and denitrification can occur simultaneously at microscopic levels, making prediction of small-scale nitrous oxide (N 2 O) emissions in the field notoriously difficult. We assessed N 2 O+N 2 emissions from soils under maize ( Zea mays L .) , switchgrass ( Panicum virgatum L.), and energy sorghum ( Sorghum bicolor L.), three potential bioenergy crops in order to identify the importance of different N 2 O sources to microsite production, and relate N 2 O source differences to crop-associated differences in pore structure formation. The combination of isotopic surveys of N 2 O in the field during one growing season and X-ray computed tomography (CT) enabled us to link results from isotopic mappings to soil structural properties. Further, our methodology allowed us to evaluate the potential for in situ N 2 O suppression by biological nitrification inhibition (BNI) in energy sorghum. Our results demonstrated that the fraction of N 2 O originating from bacterial denitrification and reduction of N 2 O to N 2 is largely determined by the volume of particulate organic matter occluded within the soil matrix and the anaerobic soil volume. Bacterial denitrification was greater in switchgrass than in the annual crops, related to changes in pore structure caused by the coarse root system. This led to high N-loses through N 2 emissions in the switchgrass system throughout the season a novel finding given the lack of data in the literature for total denitrification. Isotopic mapping indicated no differences in N 2 O-fluxes or their source processes between maize and energy sorghum that could be associated with the release of BNI by the investigated sorghum variety. The results of this research show how differences in soil pore structures among cropping systems can determine both N 2 O production via denitrification and total denitrification N losses in situ.more » « less