skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Draining the Landscape: How Do Nitrogen Concentrations in Riparian Groundwater and Stream Water Change Following Milldam Removal?
Abstract Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates andδ15N values were also determined. Denitrification rates and soilδ15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management.  more » « less
Award ID(s):
1855277 2012336
PAR ID:
10446528
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant. 
    more » « less
  2. Abstract Milldams and their legacies have significantly influenced fluvial processes and geomorphology. However, less is known about their effects on riparian zone hydrology, biogeochemistry, and water quality. Here, we discuss the potential effects of existing and breached milldams on riparian nitrogen (N) processing through multiple competing hypotheses and observations from complementary studies. Competing hypotheses characterize riparian zone processes that remove (sink) or release (source) N. Elevated groundwater levels and reducing soil conditions upstream of milldams suggest that riparian zones above dams could be hotspots for N removal via denitrification and plant N uptake. On the other hand, dam removals and subsequent drops in stream and riparian groundwater levels result in drained, oxic soils which could increase soil nitrification and decrease riparian plant uptake due to groundwater bypassing the root zone. Whether dam removals would result in a net increase or decrease of N in riparian groundwaters is unknown and needs to be investigated. While nitrification, denitrification, and plant N uptake have typically received the most attention in riparian studies, other N cycle processes such as dissimilatory nitrate reduction to ammonium (DNRA) need to be considered. We also propose a novel concept of riparian discontinuum, which highlights the hydrologic and biogeochemical discontinuities introduced in riparian zones by anthropogenic structures such as milldams. Understanding and quantifying how milldams and similar structures influence the net source or sink behavior of riparian zones is urgently needed for guiding watershed management practices and for informed decision making with regard to dam removals. 
    more » « less
  3. Abstract Nitrogen loss from cultivated soils threatens the economic and environmental sustainability of agriculture. Nitrate (NO 3 − ) derived from nitrification of nitrogen fertilizer and ammonified soil organic nitrogen may be lost from soils via denitrification, producing dinitrogen gas (N 2 ) or the greenhouse gas nitrous oxide (N 2 O). Nitrate that accumulates in soils is also subject to leaching loss, which can degrade water quality and make NO 3 − available for downstream denitrification. Here we use patterns in the isotopic composition of NO 3 − observed from 2012 to 2017 to characterize N loss to denitrification within soils, groundwater, and stream riparian corridors of a non-irrigated agroecosystem in the northern Great Plains (Judith River Watershed, Montana, USA). We find evidence for denitrification across these domains, expressed as a positive linear relationship between δ 15 N and δ 18 O values of NO 3 − , as well as increasing δ 15 N values with decreasing NO 3 − concentration. In soils, isotopic evidence of denitrification was present during fallow periods (no crop growing), despite net accumulation of NO 3 − from the nitrification of ammonified soil organic nitrogen. We combine previous results for soil NO 3 − mass balance with δ 15 N mass balance to estimate denitrification rates in soil relative to groundwater and streams. Substantial denitrification from soils during fallow periods may be masked by nitrification of ammonified soil organic nitrogen, representing a hidden loss of soil organic nitrogen and an under-quantified flux of N to the atmosphere. Globally, cultivated land spends ca. 50% of time in a fallow condition; denitrification in fallow soils may be an overlooked but globally significant source of agricultural N 2 O emissions, which must be reduced along-side other emissions to meet Paris Agreement goals for slowing global temperature increase. 
    more » « less
  4. Abstract Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling. 
    more » « less
  5. Abstract Groundwater nitrate‐N isotopes (δ15N‐) have been used to infer the effects of natural and anthropogenic change on N cycle processes in the environment. Here we report unexpected changes in groundwater δ15N‐ for riparian zones affected by relict milldams and road salt salinization. Contrary to natural, undammed conditions, groundwater δ15N‐ values declined from the upland edge through the riparian zone and were lowest near the stream. Groundwater δ15N‐ values increased for low electron donor (dissolved organic carbon) to acceptor ratios but decreased beyond a change point in ratios. Groundwater δ15N‐ values were particularly low for the riparian milldam site subjected to road‐salt salinization. We attributed these N isotopic trends to suppression of denitrification, occurrence of dissimilatory nitrate reduction to ammonium (DNRA), and/or effects of road salt salinization. Groundwater δ15N‐ can provide valuable insights into process mechanisms and can serve as “imprints” of anthropogenic activities and legacies. 
    more » « less