skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of inlet gas turbulence on the formation, development and breakup of interfacial waves in a two-phase mixing layer
Understanding the development and breakup of interfacial waves in a two-phase mixing layer between the gas and liquid streams is paramount to atomization. Due to the velocity difference between the two streams, the shear on the interface triggers a longitudinal instability, which develops to interfacial waves that propagate downstream. As the interfacial waves grow spatially, transverse modulations arise, turning the interfacial waves from quasi-two-dimensional to fully three-dimensional. The inlet gas turbulence intensity has a strong impact on the interfacial instability. Therefore, parametric direct numerical simulations are performed in the present study to systematically investigate the effect of the inlet gas turbulence on the formation, development and breakup of the interfacial waves. The open-source multiphase flow solver, PARIS, is used for the simulations and the mass–momentum consistent volume-of-fluid method is used to capture the sharp gas–liquid interfaces. Two computational domain widths are considered and the wide domain will allow a detailed study of the transverse development of the interfacial waves. The dominant frequency and spatial growth rate of the longitudinal instability are found to increase with the inlet gas turbulence intensity. The dominant transverse wavenumber, determined by the Rayleigh–Taylor instability, scales with the longitudinal frequency, so it also increases with the inlet gas turbulence intensity. The holes formed in the liquid sheet are important to the disintegration of the interfacial waves. The hole formation is influenced by the inlet gas turbulence. As a result, the sheet breakup dynamics and the statistics of the droplets formed also change accordingly.  more » « less
Award ID(s):
1942324
PAR ID:
10329037
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
921
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interfacial instability in a two-phase mixing layers between parallel gas and liquid streams is important to two-phase atomization. Depending on the inflow conditions and fluid properties, interfacial instability can be convective or absolute. The goal of the present study is to investigate the impact of gas viscosity on the interfacial instability. Both interface-resolved simulations and linear stability analysis (LSA) have been conducted. In LSA, the Orr–Sommerfeld equation is solved to analyze the spatio-temporal viscous modes. When the gas viscosity decreases, the Reynold number (Re) increases accordingly. The LSA demonstrates that when Re is higher than a critical threshold, the instability transitions from the absolute to the convective (A/C) regimes. Such a Re-induced A/C transition is also observed in the numerical simulations, though the critical Re observed in simulations is significantly lower than that predicted by LSA. The LSA results indicate that the temporal growth rate decreases with Re. When the growth rate reaches zero, the A/C transition will occur. The Re-induced A/C transition is observed in both confined and unconfined mixing layers and also in cases with low and high gas-to-liquid density ratios. In the transition from typical absolute and convective regimes, a weak absolute regime is identified in the simulations, for which the spectrograms show both the absolute and convective modes. The dominant frequency in the weak absolute regime can be influenced by the perturbation introduced at the inlet. The simulation results also show that the wave propagation speed can vary in space. In the absolute instability regime, the wave propagation speed agrees well with the absolute mode celerity near the inlet and increases to the Dimotakis speed further downstream. 
    more » « less
  2. Abstract Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, , and the azimuthal wind velocity at that radius, . The corresponding cyclostrophic Coriolis parameter, /, far exceeds its planetary counterpart, , for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, . On the vortex periphery, merges with . In the classical Rankine vortex model, the inner region undergoes solid‐body rotation rendering constant. In a more realistic representation, is not constant, and the ensuing cyclostrophic ‐effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two‐dimensional anisotropic spectrum. An alternative description is provided by one‐dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to ), and zonostrophic (transverse spectrum amplitude is proportional to ). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic‐zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet. 
    more » « less
  3. This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems. 
    more » « less
  4. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $$\alpha =3^{\circ }$$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less
  5. Experiments were carried out to observe the flow inside counterflow atomizers over a range of operating conditions and fluid properties. Liquids used were water and propylene glycol, while the gas was either air or helium. Liquid flow rates ranged from 10 ml/min to 40 ml/min, with gas liquid ratio (GLR) ranging from 0.1 to 0.6. The primary experiments used the 7-BM line of the Advanced Photon Source in Argonne National Laboratories with a 2.6 mm atomizer produced from (Poly)Ethyl-Ether-Ketone (PEEK). The X-Ray beam was operated in phase contrast mode, leading to interference patterns near the gas-liquid interface and enabling a qualitative understanding of the flow structure. Complementary optical work applied laser shadowgraphy to a 1 mm orifice atomizer constructed with quartz capillary tubing. A diffuse pulsed Nd:YAG laser backlight captured instantaneous gas-liquid interface positions in the internal flow. With both techniques, two distinct flow behaviors are observed corresponding to low and high GLR values. At low GLR, the inertia of the injected gas is insufficient to penetrate the liquid downflow. The gas stream entering the mixing chamber in the upstream direction is immediately deflected by the denser liquid and enters the discharge tube around a central liquid jet, which is sheared and accelerated by the surrounding gas, leading to breakup. A distinct frequency of jet breakup is observed inside the discharge tube, with the liquid jet oscillating and fragmenting against the walls. The situation at high GLR is quite different, however, as the incoming gas stream asymmetrically penetrates upstream into the mixing chamber, taking the form of a high-speed jet confined along one wall, and displaying a flapping instability as it encounters the liquid flowing downstream. This flapping causes violent mixing, resulting in a highly disturbed interface, along with the generation of liquid ligaments and gas bubbles. This two-phase mixture enters the discharge tube with no liquid jet formation evident for this case. The transition between these two regimes is explored by changing the liquid viscosity and gas molar mass, and weak sensitivity to fluid properties is observed. Further, quantitative image analysis techniques applied to the low and high GLR cases allow extraction of the frequencies of the liquid jet in the discharge tube at low GLR, as well as the flapping mode at high GLR. 
    more » « less