skip to main content


Title: Visualization of Internal Flow Dynamics in Counterflow Atomizers Using X-Ray Diagnostics and Laser Shadowgraphy
Experiments were carried out to observe the flow inside counterflow atomizers over a range of operating conditions and fluid properties. Liquids used were water and propylene glycol, while the gas was either air or helium. Liquid flow rates ranged from 10 ml/min to 40 ml/min, with gas liquid ratio (GLR) ranging from 0.1 to 0.6. The primary experiments used the 7-BM line of the Advanced Photon Source in Argonne National Laboratories with a 2.6 mm atomizer produced from (Poly)Ethyl-Ether-Ketone (PEEK). The X-Ray beam was operated in phase contrast mode, leading to interference patterns near the gas-liquid interface and enabling a qualitative understanding of the flow structure. Complementary optical work applied laser shadowgraphy to a 1 mm orifice atomizer constructed with quartz capillary tubing. A diffuse pulsed Nd:YAG laser backlight captured instantaneous gas-liquid interface positions in the internal flow. With both techniques, two distinct flow behaviors are observed corresponding to low and high GLR values. At low GLR, the inertia of the injected gas is insufficient to penetrate the liquid downflow. The gas stream entering the mixing chamber in the upstream direction is immediately deflected by the denser liquid and enters the discharge tube around a central liquid jet, which is sheared and accelerated by the surrounding gas, leading to breakup. A distinct frequency of jet breakup is observed inside the discharge tube, with the liquid jet oscillating and fragmenting against the walls. The situation at high GLR is quite different, however, as the incoming gas stream asymmetrically penetrates upstream into the mixing chamber, taking the form of a high-speed jet confined along one wall, and displaying a flapping instability as it encounters the liquid flowing downstream. This flapping causes violent mixing, resulting in a highly disturbed interface, along with the generation of liquid ligaments and gas bubbles. This two-phase mixture enters the discharge tube with no liquid jet formation evident for this case. The transition between these two regimes is explored by changing the liquid viscosity and gas molar mass, and weak sensitivity to fluid properties is observed. Further, quantitative image analysis techniques applied to the low and high GLR cases allow extraction of the frequencies of the liquid jet in the discharge tube at low GLR, as well as the flapping mode at high GLR.  more » « less
Award ID(s):
2023932
NSF-PAR ID:
10348747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ILASS-Americas 32nd Annual Conference on Liquid Atomization and Spray Systems
Page Range / eLocation ID:
67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow-blurring atomization is an innovative twin-fluid atomization approach that has demonstrated superior effectiveness in producing fine sprays compared to traditional airblast atomization methods. In flow-blurring atomizers, the high-speed gas flow is directed perpendicular to the liquid jet. Under specific geometric and physical conditions, the gas penetrates back into the liquid nozzle, resulting in a highly unsteady bubbly two-phase mixing zone. Despite the remarkable atomization performance of flow-blurring atomizers, the underlying dynamics of the two-phase flows and breakup mechanisms within the liquid nozzle remain poorly understood, primarily due to the challenges in experimental measurements of flow details. In this study, detailed interface-resolved numerical simulations are conducted to investigate the two-phase flows generated by a planar flow-blurring atomizer. By varying key dimensionless parameters, including the dynamic-pressure ratio, density ratio, and Weber number, over wide ranges, we aim to comprehensively characterize their effects on the two-phaseflow regimes and breakup dynamics.

     
    more » « less
  2. null (Ed.)
    We study the enhanced atomization of viscous liquids by employing a novel two-fluid atomizer. The nozzle establishes a countercurrent flow configuration in which the gas and liquid are directed in opposite directions, establishing a two-phase mixing layer. Detailed measurements of droplet size distributions were carried out using laser shadowgraphy, along with high speed flow visualization. The measurements suggest that the liquid emerges as a spray with little further secondary atomization. The performance of this nozzle is compared to the ‘flow-blurring’ nozzle studied by other investigators for four test liquids of viscosity ranging from 1 to 133.5 mPa.s. The counterflow nozzle produces a spray whose characteristics are relatively insensitive to fluid viscosity over the range studied, for gas-liquid mass flow ratios between 0.25 and 1. To gain insight into the mixing process inside the nozzle, simulations are carried out using an Eulerian-Eulerian Volume of Fluid (VoF) approach for representative experimental conditions. The simulation reveals the detailed process of self-sustained flow oscillations and the physical mechanism that generate liquid filaments and final droplets. 
    more » « less
  3. null (Ed.)

    Liquid-in-air generation of monodisperse, microscale droplets is an alternative to conventional liquid-in-liquid methods. Previous work has validated the use of a highly inertial gaseous continuous phase in the production of monodisperse droplets in the dripping regime using planar, flow-focusing, PDMS microchannels. The jetting flow regime, characteristic of small droplet size and high generation rates, is studied here in novel microfluidic geometries. The region associated with the jetting regime is characterized using the liquid Weber number (Wel) and the gas Reynolds number (Reg). We explore the effects of microchannel confinement on the development and subsequent breakup of the liquid jet as well as the physical interactions between the jet and continuous gaseous flow. Droplet breakup in the jetting regime is also studied numerically and the influence of different geometrical parameters is investigated. Numerical simulations of the jetting regime include axisymmetric cases where the jet diameter and length are studied. This work represents a vital investigation into the physics of droplet breakup in the jetting regime subject to a confined gaseous co-flow. By understanding the effects that different flow and geometry conditions have on the generation of droplets, the use of this system can be optimized for specific high-demand applications in the aerospace, material, and biological industries.

     
    more » « less
  4. Abstract

    In NMR experiments, it is crucial to control the temperature of the sample, especially when measuring kinetic parameters. Usually, it takes 2 to 5 min for the temperature of the sample inside the NMR probe to stabilize at a fixed value set for the experiment. However, the NMR sample tubes are flame‐sealed in some cases, such as when working with volatile solvents, atmosphere‐sensitive samples, or calibration samples for long‐term use. When these samples are placed inside the NMR probe, the spectrometer controls the lower portion (liquid phase) of the NMR sample tube with a gas flow at a fixed temperature, while the upper portion (vapor) is at ambient temperature. This probe design creates a unique temperature gradient across the sample, leading to vapor pressure build‐up, particularly inside a sealed NMR tube. By analyzing the temperature‐dependent spectral line shape changes of a chemical exchange process, we report that under standard experimental conditions, the sample temperature can take up to 2 to 3 h (instead of minutes) to stabilize. The time scale of the liquid–vapor equilibrium process is much slower, with a half‐life exceeding 35 min, in contrast to the 2‐min duration required to obtain each spectrum. This phenomenon is exclusively due to the liquid–vapor equilibrium process of the flame‐sealed NMR tube and is not observable otherwise.

     
    more » « less
  5. In the present work, we model and simulate the injection and atomization of a gasoline surrogate jet by detailed numerical simulation. The surrogate fuel has a low volatility and thus no phase change occurs in the process. The nozzle geometry and operation conditions are similar to the Engine Combustion Network (ECN) “Spray G”. We focus the present study on the near field where inter-jet interaction is of secondary importance. Therefore, we have considered only one of the eight jets in the original Spray G injectors. The liquid is injected from the inlet into a chamber with stagnant gas. A tangential component of velocity is introduced at the inlet to mimic the complex internal flow in the original spray G injector, which leads to the jet deflection. A parametric study on the inlet tangential velocity is carried out to identify the proper value to be used. Simulations are performed with the multiphase flow solver, Basilisk, on an adaptive mesh. The gas-liquid interface is captured by the volume-of-fluid method. The numerical results are compared to the X-ray experimental data for the jet deflection angle and the temporal variation of penetration length. The vortex dynamics in the near field are also presented by the assistance of the vortex-identification criterion. 
    more » « less