skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Cooperative C–H activation of pyridine by PBP complexes of Rh and Ir can lead to bridging 2-pyridyls with different connectivity to the B–M unit
Pyridine and quinoline undergo selective C–H activation in the 2-position with Rh and Ir complexes of a boryl/bis(phosphine) PBP pincer ligand, resulting in a 2-pyridyl bridging the transition metal and the boron center. Examination of this reactivity with Rh and Ir complexes carrying different non-pincer ligands on the transition metal led to the realization of the possible isomerism derived from the 2-pyridyl fragment connecting either via B–N/C–M bonds or via B–C/N–M bonds. This M–C/M–N isomerism was systematically examined for four structural types. Each of these types has a defined set of ligands on Rh/Ir besides 2-pyridyl and PBP. A pair of M–C/M–N isomers for each type was computationally examined for Rh and for Ir, totaling 16 compounds. Several of these compounds were isolated or observed in solution by experimental methods, in addition to a few 2-quinolyl variants. The DFT predictions concerning the thermodynamic preference within each M–C/M–N isomeric match the experimental findings very well. In two cases where DFT predicts <2 kcal mol −1 difference in free energy, both isomers were experimentally observed in solution. Analysis of the structural data, of the relevant Wiberg bond indices, and of the ETS-NOCV partitioning of the interaction of the 2-pyridyl fragment with the rest of the molecule points to the strength of the M–C(pyridyl) bond as the dominant parameter determining the relative M–C/M–N isomer favorability. This M–C bond is always stronger for the analogous Ir vs. Rh compounds, but the nature of the ligand trans to it has a significant influence, as well. DFT calculations were used to evaluate the mechanism of isomerization for one of the molecule types.  more » « less
Award ID(s):
2102324
PAR ID:
10329050
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
42
ISSN:
2041-6520
Page Range / eLocation ID:
14167 to 14173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type ( R PBP)M(CH 3 ) ( R PBP = B(NCH 2 PR 2 ) 2 C 6 H 4 − ; R = Cy or t Bu; M = Ni or Pd) to generate κ 1 -acetate complexes of the form ( R PBP)M{OC(O)CH 3 } is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual R PBP ligand, which features a central boryl donor that exerts a strong trans -influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into ( R PBP)M(CH 3 ) is facile and occurs at room temperature because of the high trans -influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using ( t Bu PBP)Pd(CH 3 ). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into ( t Bu PBP)M(CH 3 ) (M = Ni or Pd) proceeds via an S E 2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization. 
    more » « less
  2. The para-N-pyridyl-based PCP pincer ligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners (tBuPCP)IrHCl and derivatives, 2-H is highly air sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; DFT calculations of direct one-electron oxidations are in good agreement with this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (negative charge on Ir) and a p-N-pyridylidene (remote NHC) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (G° = 31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t butyl C-H bond, and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered complexes would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n alkanes. The resulting iridium alkyl complexes could undergo facile -H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation that is driven by one-electron oxidation and deprotonation, enabled by MLPT.

     
    more » « less
  3. Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1-((2,6-dimethylphenyl)imino)ethyl)phenyl, trans-(XyPhDI)IrBr2L, have been synthesized, and relative Ir-L BDFEs have been experimentally determined for a wide range of corresponding adducts of ligands L. An estimate of the absolute enthalpy of Ir-L binding has been obtained from dynamic NMR measurements. The results of DFT calculations are in very good agreement with the relative and absolute experimental values. Computational studies were extended to the formation of adducts of (XyPhDI)IrH2 and (XyPhDI)Ir(I), as well as other (pincer)Ir(I) fragments, (Phebox)Ir(I) and (PCP)Ir(I), to enable a comparison of electronic and steric effects with these archetypal pincer ligands. Attempts to reduce (XyPhDI)IrBr2(MeCN) to a hydride or an Ir(I) complex yielded a dinuclear CN-bridged complex with a methyl ligand on the cyanide-C-bound Ir center (characterized by scXRD), indicating that C-CN bond cleavage took place at that Ir center. DFT calculations indicate that the C-CN bond cleavage occurs at one Ir center with strong assistance by coordination of the CN nitrogen to the other Ir center.

     
    more » « less
  4. Pincer-ligated iridium complexes have been widely developed, and (pincer)Ir(III) complexes, particularly five-coordinate, are central to their chemistry. Such complexes typically bear two formally anionic ligands in addition to the pincer ligand itself. Yet despite the prevalence of halides as anionic ligands in transition metal chemistry there are relatively few examples in which both of these ancillary anionic ligands are halides or even other monodentate low-field anions. We report a study of the fragment (iPrPCP)IrCl2 (iPrPCP = 3-2,6-C6H3(CH2PiPr2)), and adducts thereof. These species are found to be thermodynamically disfavored relative to the corresponding hydridohalides. For example, DFT calculations and experiment indicate that one Ir-Cl bond of (iPrPCP)IrCl2 complexes will undergo reaction with H2 to give the (iPrPCP)IrHCl or an adduct thereof. In the presence of aqueous HCl, (iPrPCP)IrCl2 adds a chloride ion to give an unusual example of an anionic transition metal complex ((iPrPCP)IrCl3–) with a Zundel cation (H5O2+). (iPrPCP)IrCl2 is not stable as a monomer at room temperature but exists in solution as a mixture of clusters which can add various small molecules. DFT calculations indicate that dimerization of (iPrPCP)IrCl2 is more favorable than dimerization of (iPrPCP)IrHCl, in accord with its observed tendency to form clusters.

     
    more » « less
  5. Syntheses of Rh complexes of the phosphine-amido-silane SiNP ligand are reported. The reaction of the parent (SiNP)H ligand (4) with 0.5 equiv. [(COE)RhCl] 2 (COE = cis -cyclooctene) in the presence of NaN(SiME 3 ) 2 resulted in the formation of (SiNP)Rh(COE) (5). Compound 5 was converted to a series of (SiNP)Rh(P(OR) 3 ) complexes 6–10 (R = Ph, i Pr, n Bu, Et, or Me) by treatment with the corresponding phosphite. NMR and XRD structural data, as well as the DFT computational analysis indicate that compounds 5–10 are divided into two structural Types ( A and B ), differing in the nature of the interaction of the Si–H bond of the SiNP ligand with Rh. 
    more » « less