skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic rectification of fast oscillations on slow manifold closures
The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.  more » « less
Award ID(s):
2108856
PAR ID:
10329145
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
118
Issue:
48
ISSN:
0027-8424
Page Range / eLocation ID:
e2113650118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A two‐time‐scale system involves both fast and slow dynamics. This article studies observer design for general nonlinear two‐time‐scale systems and presents two alternative nonlinear observer design approaches, one full‐order and one reduced‐order. The full‐order observer is designed by following a scheme to systematically select design parameters, so that the fast and slow observer dynamics are assigned to estimate the corresponding system modes. The reduced‐order observer is derived based on a lower dimensional model to reconstruct the slow states, along with the algebraic slow‐motion invariant manifold function to reconstruct the fast states. Through an error analysis, it is shown that the reduced‐order observer is capable of providing accurate estimation of the states for the detailed system with an exponentially decaying estimation error. In the last part of the article, the two proposed observers are designed for an anaerobic digestion process, as an illustrative example to evaluate their performance and convergence properties. 
    more » « less
  2. Geophysical turbulence has a wide range of spatiotemporal scales that requires a multiscale prediction model for efficient and fast simulations. Stochastic parameterization is a class of multiscale methods that approximates the large-scale behaviors of the turbulent system without relying on scale separation. In the stochastic parameterization of unresolved subgrid-scale dynamics, there are several modeling parameters to be determined by tuning or fitting to data. We propose a strategy to estimate the modeling parameters in the stochastic parameterization of geostrophic turbulent systems. The main idea of the proposed approach is to generate data in a spatiotemporally local domain and use physical/statistical information to estimate the modeling parameters. In particular, we focus on the estimation of modeling parameters in the stochastic superparameterization, a variant of the stochastic parameterization framework, for an idealized model of synoptic-scale turbulence in the atmosphere and oceans. The test regimes considered in this study include strong and moderate turbulence with complicated patterns of waves, jets, and vortices. 
    more » « less
  3. A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of “slaving” occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary backward–forward systems built from the model’s equations and lead to analytic formulas for parameterizations. In this modus operandi, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place. 
    more » « less
  4. Noise typically degrades the performance of physical systems. In some cases, however, noise can provide an enhanced effect. For instance, stochastic resonance may be observed in a nonlinear oscillator when a weak signal is boosted by noise. On the other hand, adaptive oscillators are a type of nonlinear oscillator that can learn and store information in dynamic states. Here, noise is shown to increase the learning rate of an adaptive oscillator, using a Duffing adaptive oscillator. To highlight this effect, stochastic simulations are employed, and the Fokker–Planck equation is semi-analytically solved using the cumulant neglect method. As adaptive oscillators can also be used as a powerful physical reservoir computer architecture, this work shows that the Duffing adaptive oscillator can be optimized for fast learning in noisy environments. 
    more » « less
  5. Discovering the underlying dynamics of complex systems from data is an important practical topic. Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely data-driven methods may bring about incorrect physics in the presence of random noise and cannot easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for complex turbulent systems with partial observations is developed that alternates between identifying model structures, recovering unobserved variables, and estimating parameters. First, a causality-based learning approach is utilized for the sparse identification of model structures, which takes into account certain physics knowledge that is pre-learned from data. It has unique advantages in coping with indirect coupling between features and is robust to stochastic noise. A practical algorithm is designed to facilitate causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic parameterization is built to characterize the time evolution of the unobserved variables. Closed analytic formula via efficient nonlinear data assimilation is exploited to sample the trajectories of the unobserved variables, which are then treated as synthetic observations to advance a rapid parameter estimation. Furthermore, the localization of the state variable dependence and the physics constraints are incorporated into the learning procedure. This mitigates the curse of dimensionality and prevents the finite time blow-up issue. Numerical experiments show that the new algorithm identifies the model structure and provides suitable stochastic parameterizations for many complex nonlinear systems with chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events. 
    more » « less