skip to main content

This content will become publicly available on May 17, 2023

Title: Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems
Developing suitable approximate models for analyzing and simulating complex nonlinear systems is practically important. This paper aims at exploring the skill of a rich class of nonlinear stochastic models, known as the conditional Gaussian nonlinear system (CGNS), as both a cheap surrogate model and a fast preconditioner for facilitating many computationally challenging tasks. The CGNS preserves the underlying physics to a large extent and can reproduce intermittency, extreme events, and other non-Gaussian features in many complex systems arising from practical applications. Three interrelated topics are studied. First, the closed analytic formulas of solving the conditional statistics provide an efficient and accurate data assimilation scheme. It is shown that the data assimilation skill of a suitable CGNS approximate forecast model outweighs that by applying an ensemble method even to the perfect model with strong nonlinearity, where the latter suffers from filter divergence. Second, the CGNS allows the development of a fast algorithm for simultaneously estimating the parameters and the unobserved variables with uncertainty quantification in the presence of only partial observations. Utilizing an appropriate CGNS as a preconditioner significantly reduces the computational cost in accurately estimating the parameters in the original complex system. Finally, the CGNS advances rapid and statistically accurate algorithms more » for computing the probability density function and sampling the trajectories of the unobserved state variables. These fast algorithms facilitate the development of an efficient and accurate data-driven method for predicting the linear response of the original system with respect to parameter perturbations based on a suitable CGNS preconditioner. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data, is a vital task in many fields. We propose a fast and accurate method, manifold-constrained Gaussian process inference (MAGI), for this task. MAGI uses a Gaussian process model over time series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in realmore »experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments.« less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MORmore »that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back« less
  3. Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods.more »Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute prediction intervals for quantities of interest.« less
  4. Many recent advances in sequential assimilation of data into nonlinear high-dimensional models are modifications to particle filters which employ efficient searches of a high-dimensional state space. In this work, we present a complementary strategy that combines statistical emulators and particle filters. The emulators are used to learn and offer a computationally cheap approximation to the forward dynamic mapping. This emulator-particle filter (Emu-PF) approach requires a modest number of forward-model runs, but yields well-resolved posterior distributions even in non-Gaussian cases. We explore several modifications to the Emu-PF that utilize mechanisms for dimension reduction to efficiently fit the statistical emulator, andmore »present a series of simulation experiments on an atypical Lorenz-96 system to demonstrate their performance. We conclude with a discussion on how the Emu-PF can be paired with modern particle filtering algorithms.

    « less
  5. Summary Conditional density estimation seeks to model the distribution of a response variable conditional on covariates. We propose a Bayesian partition model using logistic Gaussian processes to perform conditional density estimation. The partition takes the form of a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The methodology models data in which the density changes sharply throughout the covariate space, and can be used to determine where important changes in the density occur. The Markov chain Monte Carlo algorithm involves a Laplace approximation on the latent variables of the logistic Gaussianmore »process model which marginalizes the parameters in each partition element, allowing an efficient search of the approximate posterior distribution of the tessellation. The method is consistent when the density is piecewise constant in the covariate space or when the density is Lipschitz continuous with respect to the covariates. In simulation and application to wind turbine data, the model successfully estimates the partition structure and conditional distribution.« less