skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Framework of Dynamic Data Driven Digital Twin for Complex Engineering Products: the Example of Aircraft Engine Health Management
Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended for health management and remote operation of manufacturing systems.  more » « less
Award ID(s):
1818655
PAR ID:
10329277
Author(s) / Creator(s):
Date Published:
Journal Name:
Procedia manufacturing
Volume:
55
ISSN:
2351-9789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital Twin (DT) is one of the key enabling technologies for realizing the promise of Smart Manufacturing (SM) and Industry 4.0 to improve production systems operation. Driven by the generation and analysis of high volume data coming from interconnected cyber and physical spaces, DTs are real-time digital images of physical systems, processes or products that help evaluate and improve business performance. This paper proposes a novel DT architecture for the real- time monitoring and evaluation of large-scale SM systems. An application to a manufacturing flow-shop is presented to illustrate the usefulness of the proposed methodology. 
    more » « less
  2. Calibration of automotive engines to ensure compliance with emission regulations is a critical phase in product development. Control of engine-out particulate emissions, which directly impact the environment and public health, is particularly important. Detailed physics-based models are typically used to gain a rich understanding of the complex physical phenomena that drive the soot particle formation in an engine cylinder. However, such models often fail to correctly represent the highly dynamic nature of the underlying mechanisms under transient combustion conditions. Moreover, most physics-based models were initially developed for diesel engine applications and their applicability to gasoline engines remains questionable due to differences in flame structure and fuel-wall interactions. Black-box models have been previously proposed to predict engine-out soot emissions, but their lack of physical interpretability is an unsolved drawback. To address these limitations, we present a physics-aware twin-model machine learning framework to predict and analyze engine-out soot mass from a gasoline direct injection (GDI) engine. The framework combines a physics-based model with a bagging-type ensemble learning model that both maintains high accuracy and allows physical interpretation of results without using computationally intensive high-fidelity models. This work shows why a one-model-fits-all approach fails in the case of predicting soot emissions due to clustered co-occurrences of operating conditions that cause non-compliant behavior. We compare the performance of the proposed framework with that of the standalone baseline model and a feed-forward deep neural network. Using WLTP data from a 2.0L naturally aspirated GDI engine, the proposed framework predicts engine-out soot mass with an improvement of 29% in the R2 value and 21% in the root mean squared error from the baseline physics-based model, without compromising physical interpretability. These improvements are significant enough to warrant further framework development with additional engine datasets. 
    more » « less
  3. Achieving accurate remaining useful life (RUL) prediction for prognostic and health management (PHM) depends upon sufficient prior degradation apprehension of critical components within the system. However, such prior knowledge is not always readily available in practice. We alleviate this shortcoming by proposing a novel data-driven framework that is capable of providing accurate RUL prediction without the need for any prior failure threshold knowledge. Correlative and monotonic metrics are utilized to identify critical features throughout the degradation progress. Subsequently, we append one-hot health state indicators to extracted degrading features, which are utilized together as adversarial training data for a Long Short-Term Memory (LSTM) network-based model. Finally, we utilize a fully connected layer to project the LSTM outputs into the parameters of a Gaussian mixture model (GMM) in conjunction with a categorical distribution, from which the long-term degradation progress is sampled. We verify the performance of the proposed framework using aeroengine health data simulated by Modular Aero-Propulsion System Simulation (MAPSS), and the results demonstrate that significant performance improvement can be achieved for long-term degradation progress and RUL prediction tasks. 
    more » « less
  4. This work presents an integrated architecture for a prognostic digital twin for smart manufacturing subsystems. The specific case of cutting tool wear (flank wear) in a CNC machine is considered, using benchmark data sets provided by the Prognostics and Health Management (PHM) Society. This paper emphasizes the role of robust uncertainty quantification, especially in the presence of data-driven black- and gray-box dynamic models. A surrogate dynamic model is constructed to track the evolution of flank wear using a reduced set of features extracted from multi-modal sensor time series data. The digital twin's uncertainty quantification engine integrates with this dynamic model along with a machine emulator that is tasked with generating future operating scenarios for the machine. The surrogate dynamic model and emulator are combined in a closed-loop architecture with an adaptive Monte Carlo uncertainty forecasting framework that allows prediction of quantities of interest critical to prognostics within user-prescribed bounds. Numerical results using the PHM dataset are shown illustrating how the adaptive uncertainty forecasting tools deliver a trustworthy forecast by maintaining predictive error within the prescribed tolerance. 
    more » « less
  5. Failure prognostics is the process of predicting the remaining useful life (RUL) of machine components, which is vital for the predictive maintenance of industrial machinery. This paper presents a new deep learning approach for failure prognostics of rolling element bearings based on a Long Short-Term Memory (LSTM) predictor trained simultaneously within a Generative Adversarial Network (GAN) architecture. The LSTM predictor takes the current and past observations of a well-defined health index as an input, uses those to forecast the future degradation trajectory, and then derives the RUL. Our proposed approach has three unique features: (1) Defining the bearing failure threshold by adopting an International Organization of Standardization (ISO) standard, making the approach industry-relevant; (2) Employing a GAN-based data augmentation technique to improve the accuracy and robustness of RUL prediction in cases where the deep learning model has access to only a small amount of training data; (3) Integrating the training process of the LSTM predictor within the GAN architecture. A joint training approach is utilized to ensure that the LSTM predictor model learns both the original and artificially generated data to capture the degradation trajectories. We utilize a publicly available accelerated run-to-failure dataset of rolling element bearings to assess the performance of the proposed approach. Results of a five-fold cross-validation study show that the integration of the LSTM predictor with GAN helps to decrease the average RUL prediction error by 29% over a simple LSTM model without GAN implementation. 
    more » « less