skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What lessons can we learn from past pandemics?
This is a pamphlet and associated materials (animation, activity sheet, etc.) designed to introduce students worldwide to our work and what anthropology and science can do for them.  more » « less
Award ID(s):
1919515
PAR ID:
10329436
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Futurum Careers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Andrews, B (Ed.)
    Abstract The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes. 
    more » « less
  2. The dataset includes the measurements of individual subduction zones defined in the convergence-parallel, trench-perpendicular, and spreading-parallel direction. </p>  </p> Table S3. Location of each trench, arc, and back-arc defined in a direction parallel to the convergence, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p> Table S4. Location of each trench, arc, and back-arc defined in a direction perpendicular to the trench, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p> Table S5. Location of each trench, arc, and back-arc defined in a direction parallel to the spreading direction, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p>  </p> 
    more » « less
  3. Molecular docking is a computational technique used to predict ligand binding potential, conformation, and location for a given receptor, and is regarded as an attractive method to use in drug design due to its relatively low computational and monetary cost. However, molecular docking programs tend not to be accessible to novice users. Most docking programs require at least a basic knowledge of command line and computer programming to install and configure the program. Additionally, tutorials for the most commonly used programs tend to be inflexible, requiring a specific molecule or set of molecules to be bound to a specific receptor, and need the installation and usage of other programs or websites to download and prepare structures. To increase general access to molecular docking, basil_dock utilizes a series of easy-to-use Jupyter notebooks that do not assume user familiarity with molecular docking procedures and concepts, requiring little command line usage and software installation. The series includes four notebooks that were created to reflect the different steps in the molecular docking process: (1) the preparation of ligand and protein files prior to docking, (2) the docking of ligands to a protein receptor, (3) analyzing the resulting data and determining how different functional groups in the ligand can affect protein-ligand binding, and (4) identifying essential locations for binding within the ligand and protein. The notebooks enable novice users flexibility and customization in exploring docking procedures and systems, as well as teaching users the basis behind molecular docking without having to leave the environment to obtain information and materials from other applications. The first version of basil_dock allows users to choose from receptors uploaded to the Protein Data Bank and to add additional ligands as desired. Users can then select between the Vina and Smina docking engines and change ligand functional groups to see how the substitution of atom groups affects binding affinity and ligand conformation. The data can then be analyzed to determine residues in the receptor and atom groups in the ligand that are likely to be integral to forming the ligand-protein complex and to discern which ligands are likely to be orally bioactive based on Lipinski’s Rule of Five. From this work, a package of python scripts has been created to streamline the generating, splitting, and writing of ligand files, greatly reducing the number of errors arising from attempting to split a comprehensive ligand file manually. Libraries used in basil_dock include Vina, Smina, RDKit, openbabel, and MDAnalysis. While the package has been designed based off the needs of basil_dock, it has been created to be extensible. Support for this project was provided by NSF 2142033 
    more » « less
  4. Abstract Environmental data science (EDS) is a nascent STEM sub-discipline where we have the opportunity to shape the culture, to work to create an environment that welcomes broad participation, and to build a culture of inclusivity. Like many STEM disciplines, some may be excluded from participating in EDS due to historical legacies, systemic barriers, and social prejudices that create unequal opportunities and access. To better understand barriers to participation, and to identify solutions and priorities, we conducted a survey of the participants of the first Environmental Data Science Summit. We identified three barriers to participation that matched with three solutions and priorities for the field. The most commonly identified barrier was an unsupportive work environment for minorities and a male-dominated culture; creating a supportive community and work environment, particularly for minorities, was identified as both a solution and a priority for broadening participation in EDS. The second most commonly identified barrier pertained to training and maintaining relevance— specifically, late or informal training experiences and time constraints limiting time to upskill. The solution and priority proposed included access to good mentors and teachers, open data and educational materials, and increased applicability of projects. Finally, the third most commonly identified barrier, solution, and priority relate to financial concerns and the funding landscape, with both the solution and priority identified as improving funding and salary conditions. The results of this study identify the key barrier to participation in EDS and highlight potential solutions to lower these barriers to build a more equitable future. 
    more » « less
  5. Moura, Mario R. (Ed.)
    Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current modeling approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic understanding of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less