skip to main content

Title: Numerical impacts on tracer transport: Diagnosing the influence of dynamical core formulation and resolution on stratospheric transport
Abstract Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation vs. comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealised tracer, the age-of-air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3-d model to the tropical leaky pipe framework of Neu and Plumb (1999). Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half more » the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of the Atmospheric Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A cloud-resolving model is used to examine the virtually shear-free evolution of incipient tropical cyclones initialized with different degrees of misalignment between the lower- and middle-tropospheric centers of rotation. Increasing the initial displacement of rotational centers (the tilt) from a negligible value to several hundred kilometers extends the time scale of hurricane formation from 1 to 10 days. Hindered amplification of the maximum tangential velocity υm at the surface of a strongly perturbed system is related to an extended duration of misalignment resulting from incomplete early decay and subsequent transient growth of the tilt magnitude. The prolonged misalignment coincides with a prolonged period of asymmetric convection peaked far from the surface center of the vortex. A Sawyer–Eliassen model is used to analyze the disparity between azimuthal velocity tendencies of selected pre–tropical storm vortices with low and high degrees of misalignment. Although no single factor completely explains the difference of intensification rates, greater misalignment is linked to weaker positive azimuthal velocity forcing near υm by the component of the mean secondary circulation attributed to heating by microphysical cloud processes. Of note regarding the dynamics, enhanced tilt only modestly affects the growth rate of kinetic energy outside the core of themore »surface vortex while severely hindering intensification of υm within the core for at least several days. The processes controlling the evolution of the misalignment associated with inefficient development are examined in detail for a selected simulation. It is found that adiabatic mechanisms are capable of driving the transient amplification of tilt, whereas diabatic processes are essential to ultimate alignment of the tropical cyclone.

    « less
  2. Abstract Using an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughoutmore »the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.« less
  3. The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation andmore »the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic.« less
  4. Abstract Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO 2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO 2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changesmore »in the UTLS during near-equinox months.« less
  5. Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is thedominant driver of natural climate variability oninterannual to multidecadal timescales. Based on a set of continuous sulfateand sulfur records from a suite of ice cores from Greenland and Antarctica,the HolVol v.1.0 database includes estimates of the magnitudes andapproximate source latitudes of major volcanic stratospheric sulfurinjection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to1900 CE), constituting an extension of the previous record by 7000 years.The database incorporates new-generation ice-core aerosol records with asub-annual temporal resolution and a demonstrated sub-decadal dating accuracyand precision. By tightly aligning and stacking the ice-core records on theWD2014 chronology from Antarctica, we resolve long-standing inconsistenciesin the dating of ancient volcanic eruptions that arise from biased (i.e.,dated too old) ice-core chronologies over the Holocene for Greenland. Wereconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolarsulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locationsis in agreement with prior reconstructions for the past 2500 years. Intotal,more »these eruptions injected 7410 Tg S into thestratosphere: 70 % from tropical eruptions and 25 % from NHextratropical eruptions. A long-term latitudinally and monthly resolvedstratospheric aerosol optical depth (SAOD) time series is reconstructed fromthe HolVol VSSI estimates, representing the first Holocene-scalereconstruction constrained by Greenland and Antarctica ice cores. These newlong-term reconstructions of past VSSI and SAOD variability confirm evidencefrom regional volcanic eruption chronologies (e.g., from Iceland) in showingthat the Early Holocene (9500–7000 BCE) experienced a higher number ofvolcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared withthe past 2500 years. This increase coincides with the rapid retreat of icesheets during deglaciation, providing context for potential future increasesin volcanic activity in regions under projected glacier melting in the 21stcentury. The reconstructed VSSI and SAOD data are available at (Sigl et al., 2021).« less