skip to main content


Title: A QBO Cookbook: Sensitivity of the Quasi‐Biennial Oscillation to Resolution, Resolved Waves, and Parameterized Gravity Waves
Abstract

An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi‐biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale‐selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid‐stratosphere when the half‐width exceedsm/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave‐driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.

 
more » « less
Award ID(s):
1852727
NSF-PAR ID:
10366880
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Contributions of the resolved waves and parameterized gravity waves to changes in the quasi‐biennial oscillation (QBO) in a future simulation (2015–2100) under the SSP370 scenario are investigated using the Community Earth System Model 2 (CESM2) with enhanced vertical resolution and are compared with those from four CESM2 historical simulations (1979–2014). The maximum QBO amplitude of the future simulation is 26.0 m s−1, which is slightly less than that of the historical simulations (27.4–29.3 m s−1). However, the QBO period in the future simulation is much shorter: 21.6 months in the early‐future (2015–2050) and 12 months in the late‐future (2065–2100) period, than in the historical simulations (23.5–30.9 months). The shortened QBO period in the future is primarily due to increases in both resolved wave forcing and parameterized gravity wave drag (GWD) in the stratosphere, with a more significant contribution by the GWD. As convective activity becomes stronger in the future simulation, the momentum flux of parameterized convective gravity waves at the cloud top increases, resulting in stronger GWD in the stratosphere. The increases in the magnitude of westward GWD dominate those of eastward GWD in the stratosphere. This is due to a significant increase in westward momentum flux in the troposphere, especially during the descending easterly QBO, and enhanced westerlies in the lowermost stratosphere, which introduces a westward anomaly. For the resolved waves, Kelvin wave forcing is a key contributor to increased eastward forcing in the future simulation, with relatively minor contributions by other equatorial planetary waves.

     
    more » « less
  2. Abstract

    We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2simulations. In the quadrupled CO2simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.

     
    more » « less
  3. Abstract

    We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes atz≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλH = 170–1,850 km, intrinsic periodsτIr = 11–54 min, intrinsic horizontal phase speedscIH = 245–630 m/s, and density perturbations 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated atz∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere.

     
    more » « less
  4. Abstract

    Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models.

     
    more » « less
  5. Abstract

    Breaking atmospheric gravity waves (GWs) in the tropical stratosphere are essential in driving the roughly 2‐year oscillation of zonal winds in this region known as the Quasi‐Biennial Oscillation (QBO). As Global Climate Models (GCM)s are not typically able to directly resolve the spectrum of waves required to drive the QBO, parameterizations are necessary. Such parameterizations often require knowledge of poorly constrained physical parameters. In the case of the spectral gravity parameterization used in this work, these parameters are the total equatorial GW stress and the half width of phase speed distribution. Radiosonde observations are used to obtain the period and amplitude of the QBO, which are compared against values obtained from a GCM. We utilize two established calibration techniques to obtain estimates of the range of plausible parameter values: History matching & Ensemble Kalman Inversion (EKI). History matching is found to reduce the size of the initial range of plausible parameters by a factor of 98%, requiring only 60 model integrations. EKI cannot natively provide any uncertainty quantification but is able to produce a single best estimate of the calibrated values in 25 integrations. When directly comparing the approaches using the Calibrate, Emulate, Sample method to produce a posterior estimate from EKI, history matching produces more compact posteriors with fewer model integrations at lower ensemble sizes compared to EKI; however, these differences become less apparent at higher ensemble sizes.

     
    more » « less