skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Volcano infrasound: progress and future directions
Abstract Over the past two decades (2000–2020), volcano infrasound (acoustic waves with frequencies less than 20 Hz propagating in the atmosphere) has evolved from an area of academic research to a useful monitoring tool. As a result, infrasound is routinely used by volcano observatories around the world to detect, locate, and characterize volcanic activity. It is particularly useful in confirming subaerial activity and monitoring remote eruptions, and it has shown promise in forecasting paroxysmal activity at open-vent systems. Fundamental research on volcano infrasound is providing substantial new insights on eruption dynamics and volcanic processes and will continue to do so over the next decade. The increased availability of infrasound sensors will expand observations of varied eruption styles, and the associated increase in data volume will make machine learning workflows more feasible. More sophisticated modeling will be applied to examine infrasound source and propagation effects from local to global distances, leading to improved infrasound-derived estimates of eruption properties. Future work will use infrasound to detect, locate, and characterize moving flows, such as pyroclastic density currents, lahars, rockfalls, lava flows, and avalanches. Infrasound observations will be further integrated with other data streams, such as seismic, ground- and satellite-based thermal and visual imagery, geodetic, lightning, and gas data. The volcano infrasound community should continue efforts to make data and codes accessible and to improve diversity, equity, and inclusion in the field. In summary, the next decade of volcano infrasound research will continue to advance our understanding of complex volcano processes through increased data availability, sensor technologies, enhanced modeling capabilities, and novel data analysis methods that will improve hazard detection and mitigation.  more » « less
Award ID(s):
1847736 1949219 1952392 1620576 1830976
PAR ID:
10329477
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of Volcanology
Volume:
84
Issue:
5
ISSN:
1432-0819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible. 
    more » « less
  2. Abstract Since the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences generally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infrasound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption processes and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal volcanic structure, and the relationship between seismic unrest and volcanic processes. 
    more » « less
  3. Abstract Infrasound (low frequency sound waves) can be used to monitor and characterize volcanic eruptions. However, infrasound sensors are usually placed on the ground, thus providing a limited sampling of the acoustic radiation pattern that can bias source size estimates. We present observations of explosive eruptions from a novel uncrewed aircraft system (UAS)‐based infrasound sensor platform that was strategically hovered near the active vents of Stromboli volcano, Italy. We captured eruption infrasound from short‐duration explosions and jetting events. While potential vertical directionality was inconclusive for the short‐duration explosion, we find that jetting events exhibit vertical sound directionality that was observed with a UAS close to vertical. This directionality would not have been observed using only traditional deployments of ground‐based infrasound sensors, but is consistent with jet noise theory. This proof‐of‐concept study provides unique information that can improve our ability to characterize and quantify the directionality of volcanic eruptions and their associated hazards. 
    more » « less
  4. Abstract Infrasound (low‐frequency acoustic waves) has proven useful to detect and characterize subaerial volcanic activity, but understanding the infrasonic source during sustained eruptions is still an area of active research. Preliminary comparison between acoustic eruption spectra and the jet noise similarity spectra suggests that volcanoes can produce an infrasonic form of jet noise from turbulence. The jet noise similarity spectra, empirically derived from audible laboratory jets, consist of two noise sources: large‐scale turbulence (LST) and fine‐scale turbulence (FST). We fit the similarity spectra quantitatively to eruptions of Mount St. Helens in 2005, Tungurahua in 2006, and Kīlauea in 2018 using nonlinear least squares fitting. By fitting over a wide infrasonic frequency band (0.05–10 Hz) and restricting the peak frequency above 0.15 Hz, we observe a better fit during times of eruption versus non‐eruptive background noise. Fitting smaller overlapping frequency bands highlights changes in the fit of LST and FST spectra, which aligns with observed changes in eruption dynamics. Our results indicate that future quantitative spectral fitting of eruption data will help identify changes in eruption source parameters such as velocity, jet diameter, and ash content which are critical for effective hazard monitoring and response. 
    more » « less
  5. Abstract A new episode of unrest and phreatic/phreatomagmatic/magmatic eruptions occurred at Ambae volcano, Vanuatu, in 2017–2018. We installed a multi-station seismo-acoustic network consisting of seven 3-component broadband seismic stations and four 3-element (26–62 m maximum inter-element separation) infrasound arrays during the last phase of the 2018 eruption episode, capturing at least six reported major explosions towards the end of the eruption episode. The observed volcanic seismic signals are generally in the passband 0.5–10 Hz during the eruptive activity, but the corresponding acoustic signals have relatively low frequencies (< 1 Hz). Apparent very-long-period (< 0.2 Hz) seismic signals are also observed during the eruptive episode, but we show that they are generated as ground-coupled airwaves and propagate with atmospheric acoustic velocity. We observe strongly coherent infrasound waves at all acoustic arrays during the eruptions. Using waveform similarity of the acoustic signals, we detect previously unreported volcanic explosions at the summit vent region based on constant-celerity reverse-time-migration (RTM) analysis. The detected acoustic bursts are temporally related to shallow seismic volcanic tremor (frequency content of 5–10 Hz), which we characterise using a simplified amplitude ratio method at a seismic station pair with different distances from the vent. The amplitude ratio increased at the onset of large explosions and then decreased, which is interpreted as the seismic source ascent and descent. The ratio change is potentially useful to recognise volcanic unrest using only two seismic stations quickly. This study reiterates the value of joint seismo-acoustic data for improving interpretation of volcanic activity and reducing ambiguity in geophysical monitoring. 
    more » « less