skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Octave-spanning tunable infrared parametric oscillators in nanophotonics
Widely tunable coherent sources are desirable in nanophotonics for a multitude of applications ranging from communications to sensing. The mid-infrared spectral region (wavelengths beyond 2 μm) is particularly important for applications relying on molecular spectroscopy. Among tunable sources, optical parametric oscillators typically offer some of the broadest tuning ranges; however, their implementations in nanophotonics have been limited to narrow tuning ranges in the infrared or to visible wavelengths. Here, we surpass these limits in dispersion-engineered periodically poled lithium niobate nanophotonics and demonstrate ultrawidely tunable optical parametric oscillators. Using 100 ns pulses near 1 μm, we generate output wavelengths tunable from 1.53 μm to 3.25 μm in a single chip with output powers as high as tens of milliwatts. Our results represent the first octave-spanning tunable source in nanophotonics extending into the mid-infrared, which can be useful for numerous integrated photonic applications.  more » « less
Award ID(s):
1918549 1846273
PAR ID:
10494925
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
30
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical frequency comb is an enabling technology for a multitude of applications from metrology to ranging and communications. The tremendous progress in sources of optical frequency combs has mostly been centered around the near-infrared spectral region, while many applications demand sources in the visible and mid-infrared, which have so far been challenging to achieve, especially in nanophotonics. Here, we report widely tunable frequency comb generation using optical parametric oscillators in lithium niobate nanophotonics. We demonstrate sub-picosecond frequency combs tunable beyond an octave extending from 1.5 up to 3.3 μm with femtojoule-level thresholds on a single chip. We utilize the up-conversion of the infrared combs to generate visible frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability and visible-to-mid-infrared spectral coverage of our source highlight a practical and universal path for the realization of efficient frequency comb sources in nanophotonics, overcoming their spectral sparsity. 
    more » « less
  2. We demonstrate mid-infrared frequency combs from synchronously-pumped optical parametric oscillators in nanophotonic lithium niobate at 19 GHz. With a picosecond pump at ~1µm, the output can be tuned between 1.5 and 3.3µm supporting sub-picosecond pulses. 
    more » « less
  3. Abstract The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications. 
    more » « less
  4. Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices. 
    more » « less
  5. We report on the structural, chemical, and optical properties of titanium sesquioxide Ti2O3 thin films on single-crystal sapphire substrates by pulsed laser deposition. The thin film of Ti2O3 on sapphire exhibits light absorption of around 25%–45% in the wavelength range of 2–10 μm. Here, we design an infrared photodetector structure based on Ti2O3, enhanced by a resonant metasurface, to improve its light absorption in mid-wave and long-wave infrared windows. We show that light absorption in the mid-wave infrared window (wavelength 3–5 μm) in the active Ti2O3 layer can be significantly enhanced from 30%–40% to more than 80% utilizing a thin resonant metasurface made of low-loss silicon, facilitating efficient scattering in the active layer. Furthermore, we compare the absorptance of the Ti2O3 layer with that of conventional semiconductors, such as InSb, InAs, and HgCdTe, operating in the infrared range with a wavelength of 2–10 μm and demonstrate that the absorption in the Ti2O3 film is significantly higher than in these conventional semiconductors due to the narrow-bandgap characteristics of Ti2O3. The proposed designs can be used to tailor the wavelengths of photodetection across the near- and mid-infrared ranges. 
    more » « less