skip to main content


Title: A numerical framework for simulating the atmospheric variability of supermicron marine biogenic ice nucleating particles
Abstract. We present a framework for estimating concentrations of episodicallyelevated high-temperature marine ice nucleating particles (INPs) in the seasurface microlayer and their subsequent emission into the atmosphericboundary layer. These episodic INPs have been observed in multipleship-based and coastal field campaigns, but the processes controlling theirocean concentrations and transfer to the atmosphere are not yet fullyunderstood. We use a combination of empirical constraints and simulationoutputs from an Earth system model to explore different hypotheses forexplaining the variability of INP concentrations, and the occurrence ofepisodic INPs, in the marine atmosphere. In our calculations, we examine the following two proposed oceanic sources of high-temperature INPs: heterotrophic bacteria and marine biopolymer aggregates (MBPAs). Furthermore, we assume that the emission of these INPs is determined by the production of supermicron sea spray aerosol formed from jet drops, with an entrainment probability that is described by Poisson statistics. The concentration of jet drops is derived from the number concentration of supermicron sea spray aerosol calculated from model runs. We then derive the resulting number concentrations of marine high-temperature INPs (at 253 K) in the atmospheric boundary layer and compare their variability to atmospheric observations of INP variability. Specifically, we compare against concentrations of episodically occurring high-temperature INPs observed during field campaigns in the Southern Ocean, the Equatorial Pacific, and the North Atlantic. In this case study, we evaluate our framework at 253 K because reliable observational data at this temperature are available across three different ocean regions, but suitable data are sparse at higher temperatures. We find that heterotrophic bacteria and MBPAs acting as INPs provide only apartial explanation for the observed high INP concentrations. We note,however, that there are still substantial knowledge gaps, particularlyconcerning the identity of the oceanic INPs contributing most frequently toepisodic high-temperature INPs, their specific ice nucleation activity, andthe enrichment of their concentrations during the sea–air transfer process. Therefore, targeted measurements investigating the composition of these marine INPs and drivers for their emissions are needed, ideally incombination with modeling studies focused on the potential cloud impacts ofthese high-temperature INPs.  more » « less
Award ID(s):
1801971
NSF-PAR ID:
10329713
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
847 to 859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oceans are, generally, relatively weak sources of ice nucleating particles (INPs). Thus, dust transported from terrestrial regions can dominate atmospheric INP concentrations even in remote marine regions. Studies of ocean‐emitted INPs have focused upon sea spray aerosols containing biogenic species. Even though large concentrations of dust are transported over marine regions, resuspended dust has never been explicitly considered as another possible source of ocean‐emitted INPs. Current models assume that deposited dust is not re‐emitted from surface waters. Our laboratory studies of aerosol particles produced from coastal seawater and synthetic seawater doped with dust show that dust can indeed be ejected from water during bubble bursting. INP concentration measurements show these ejected dust particles retain ice nucleating activity. Doping synthetic seawater to simulate a strong dust deposition event produced INPs active at temperatures colder than −13°C and INP concentrations 1 to 2 orders of magnitude greater than either lab sea spray or marine boundary layer measurements. The relevance of these laboratory findings is highlighted by single‐particle composition measurements along the Californian coast where at least 9% of dust particles were mixed with sea salt. Additionally, global modeling studies show that resuspension of dust from the ocean could exert the most impact over the Southern Ocean, where ocean‐emitted INPs are thought to dominate atmospheric INP populations. More work characterizing the factors governing the resuspension of dust particles is required to understand the potential impact upon clouds.

     
    more » « less
  2. Abstract

    Here we report the ice nucleating temperatures of marine aerosols sampled in the subarctic Atlantic Ocean during a phytoplankton bloom. Ice nucleation measurements were conducted on primary aerosol samples and phytoplankton isolated from seawater samples. Primary marine aerosol samples produced by a specialized aerosol generator (the Sea Sweep) catalyzed droplet freezing at temperatures between −33.4 °C and − 24.5 °C, with a mean freezing temperature of −28.5 °C, which was significantly warmer than the homogeneous freezing temperature of pure water in the atmosphere (−36 °C). Following a storm‐induced deep mixing event, ice nucleation activity was enhanced by two metrics: (1) the fraction of aerosols acting as ice nucleating particles (INPs) and (2) the nucleating temperatures, which were the warmest observed throughout the project. Seawater samples were collected from the ocean's surface and phytoplankton groups, includingSynechococcus, picoeukaryotes, and nanoeukaryotes, were isolated into sodium chloride sheath fluid solution using a cell‐sorting flow cytometer. Marine aerosol containingSynechococcus, picoeukaryotes, and nanoeukaryotes serves as INP at temperatures significantly warmer than the homogeneous freezing temperature of pure water in the atmosphere. Samples containing whole organisms in 30 g L−1NaCl had freezing temperatures between −33.8 and − 31.1 °C. Dilution of samples to representative atmospheric aerosol salt concentrations (as low as 3.75 g L−1NaCl) raised freezing temperatures to as high as −22.1 °C. It follows that marine aerosols containing phytoplankton may have widespread influence on marine ice nucleation events by facilitating ice nucleation.

     
    more » « less
  3. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less
  4. Abstract. In this study, we present atmospheric ice-nucleating particle (INP)concentrations from the Gruvebadet (GVB) observatory in Ny-Ålesund(Svalbard). All aerosol particle sampling activities were conducted in April–August 2018. Ambient INP concentrations (nINP) were measured for aerosolparticles collected on filter samples by means of two offline instruments:the Dynamic Filter Processing Chamber (DFPC) and the West Texas CryogenicRefrigerator Applied to Freezing Test system (WT-CRAFT) to assesscondensation and immersion freezing, respectively. DFPC measured nINPs for aset of filters collected through two size-segregated inlets: one fortransmitting particulate matter of less than 1 µm (PM1), theother for particles with an aerodynamic diameter of less than 10 µmaerodynamic diameter (PM10). Overall, nINPPM10 measured by DFPC ata water saturation ratio of 1.02 ranged from 3 to 185 m−3 attemperatures (Ts) of −15 to −22 ∘C. On average, the super-micrometer INP (nINPPM10-nINPPM1) accounted forapproximately 20 %–30 % of nINPPM10 in spring, increasing in summer to45 % at −22 ∘C and 65 % at −15 ∘C. This increase in super-micrometer INP fraction towards summer suggests that super-micrometeraerosol particles play an important role as the source of INPs in theArctic. For the same T range, WT-CRAFT measured 1 to 199 m−3. Althoughthe two nINP datasets were in general agreement, a notable nINP offset wasobserved, particularly at −15 ∘C. Interestingly, the results ofboth DFPC and WT-CRAFT measurements did not show a sharp increase in nINPfrom spring to summer. While an increase was observed in a subset of ourdata (WT-CRAFT, between −18 and −21 ∘C), the spring-to-summernINP enhancement ratios never exceeded a factor of 3. More evident seasonal variability was found, however, in our activated fraction (AF) data, calculated by scaling the measured nINP to the total aerosol particleconcentration. In 2018, AF increased from spring to summer. This seasonal AFtrend corresponds to the overall decrease in aerosol concentration towardssummer and a concomitant increase in the contribution of super-micrometer particles. Indeed, the AF of coarse particles resulted markedly higher thanthat of sub-micrometer ones (2 orders of magnitude). Analysis of low-traveling back-trajectories and meteorological conditions at GVB matched to our INP data suggests that the summertime INP population isinfluenced by both terrestrial (snow-free land) and marine sources. Ourspatiotemporal analyses of satellite-retrieved chlorophyll a, as well as spatial source attribution, indicate that the maritime INPs at GVB may comefrom the seawaters surrounding the Svalbard archipelago and/or in proximityto Greenland and Iceland during the observation period. Nevertheless,further analyses, performed on larger datasets, would be necessary to reachfirmer and more general conclusions. 
    more » « less
  5. Abstract. Ice-nucleating particles (INPs) represent a rare subset of aerosol particlesthat initiate cloud droplet freezing at temperatures above the homogenousfreezing point of water (−38 ∘C). Considering that the oceancovers 71 % of the Earth's surface and represents a large potential sourceof INPs, it is imperative that the identities, properties and relativeemissions of ocean INPs become better understood. However, the specificunderlying drivers of marine INP emissions remain largely unknown due tolimited observations and the challenges associated with isolating rare INPs. Bygenerating isolated nascent sea spray aerosol (SSA) over a range ofbiological conditions, mesocosm studies have shown that marine microbes cancontribute to INPs. Here, we identify 14 (30 %) cultivable halotolerantice-nucleating microbes and fungi among 47 total isolates recovered fromprecipitation and aerosol samples collected in coastal air in southernCalifornia. Ice-nucleating (IN) isolates collected in coastal air were nucleated ice fromextremely warm to moderate freezing temperatures (−2.3 to −18 ∘C). While some Gammaproteobacteria and fungi are known to nucleate ice attemperatures as high as −2 ∘C, Brevibacterium sp. is the first Actinobacteriafound to be capable of ice nucleation at a relatively high freezingtemperature (−2.3 ∘C). Air mass trajectory analysis demonstratesthat marine aerosol sources were dominant during all sampling periods, andphylogenetic analysis indicates that at least 2 of the 14 IN isolates areclosely related to marine taxa. Moreover, results from cell-washingexperiments demonstrate that most IN isolates maintained freezing activityin the absence of nutrients and cell growth media. This study supportsprevious studies that implicated microbes as a potential source of marineINPs, and it additionally demonstrates links between precipitation, marineaerosol and IN microbes. 
    more » « less