skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric oxidation impact on sea spray produced ice nucleating particles
Ice nucleating particles (INPs) in sea spray aerosol (SSA) are important for ice formation in clouds over oceans. We found that SSA INP concentrations during a phytoplankton bloom were degraded with exposure to 3 to 8 days of atmospheric oxidation.  more » « less
Award ID(s):
1801971
PAR ID:
10555770
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Atmospheres
Volume:
3
Issue:
10
ISSN:
2634-3606
Page Range / eLocation ID:
1513 to 1532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The formation of ice in clouds can strongly impact cloud properties and precipitation processes during storms, including atmospheric rivers. Sea spray aerosol (SSA) particles are relatively inefficient as ice nucleating particles (INPs) compared to mineral dust. However, due to the vast coverage of the Earth's surface by the oceans, a number of recent studies have focused on identifying sources of marine INPs, particularly in regions lacking a strong influence from dust. This study describes the integration, validation, and application of a system coupling a continuous flow diffusion chamber with a single particle mass spectrometer using a pumped counterflow virtual impactor to remove nonnucleated particles and selectively measure the composition of INPs with a detection efficiency of 3.10×10−4. In situ measurements of immersion freezing INP composition were made at a coastal site in California using the integrated system. Mineral dust particles were the most abundant ice crystal residual type during the sampling period and found to be ice active despite having undergone atmospheric processing. SSA were more abundant in ambient measurements but represented only a minor fraction of the ice crystal residual population at −31 °C. Notably, the SSA particles that activated were enriched with organic nitrogen species that were likely transferred from the ocean. Calculations of ice nucleation active site densities were within good agreement with previous studies of mineral dust and SSA. 
    more » « less
  2. Abstract We develop a generalized interpolation material point method (GIMPM) for the shallow shelf approximation (SSA) of ice flow. The GIMPM, which can be viewed as a particle version of the finite element method, is used here to solve the shallow shelf approximations of the momentum balance and ice thickness evolution equations. We introduce novel numerical schemes for particle splitting and integration at domain boundaries to accurately simulate the spreading of an ice shelf. The advantages of the proposed GIMPM‐SSA framework include efficient advection of history or internal state variables without diffusion errors, automated tracking of the ice front and grounding line at sub‐element scales, and a weak formulation based on well‐established conventions of the finite element method with minimal additional computational cost. We demonstrate the numerical accuracy and stability of the GIMPM using 1‐D and 2‐D benchmark examples. We also compare the accuracy of the GIMPM with the standard material point method (sMPM) and a reweighted form of the sMPM. We find that the grid‐crossing error is very severe for SSA simulations with the sMPM, whereas the GIMPM successfully mitigates this error. While the grid‐crossing error can be reasonably reduced in the sMPM by implementing a simple material point reweighting scheme, this approach it not as accurate as the GIMPM. Thus, we illustrate that the GIMPM‐SSA framework is viable for the simulation of ice sheet‐shelf evolution and enables boundary tracking and error‐free advection of history or state variables, such as ice thickness or damage. 
    more » « less
  3. The rapidly warming Arctic has transitioned to thinner sea ice which fractures, producing leads. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, which vary in salinity and organic and microbial community composition. A marine aerosol reference tank was deployed aboard an icebreaker to the Arctic Ocean during August–September 2018 to study SSA generated from locally collected surface waters. Aerosol generation experiments were carried out using water collected from the marginal ice zone, a human-made hole in sea ice near the North Pole, and both lead and melt pond water during an ice floe drift period. Salinity, chlorophyll a, organic carbon, nitrogen, and microbial community composition were measured. Eukaryotic plankton and bacterial abundance were elevated in experimental water from the marginal ice zone, but the relative contributions from major eukaryotic taxonomic groups varied little across the experiments. The chemical composition of individual SSA particles was analyzed using Raman microspectroscopy and computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy. Individual sea salt aerosol, primary organic aerosol, and mineral dust particles were observed. Sea salt aerosol constituted 44–95% of individual submicrometer and 68–100% of supermicrometer particles, by number, generated during each experiment. Carbon was detected in 85%, by number, of the individual sea salt particles, with visible organic coatings. Carbohydrates were detected in 72% of particles, by number, with smaller contributions from long-chain fatty acids (13%) and siliceous material (15%). SSA generated from melt pond water contained only long-chain fatty acids and siliceous material. Quantification of the ice-nucleating activity showed that locally produced SSA may define the High Arctic background ice-nucleating particle population, but cannot account for the peak atmospheric concentrations observed. As the Arctic warms, the increasing SSA emissions have a complex dependence on changing biological and physical processes. 
    more » « less
  4. Abstract. Sea spray aerosols (SSAs) represent one of the most abundant aerosol types on a global scale and have been observed at all altitudes including the upper troposphere. SSA has been explored in recent years as a source of ice-nucleating particles (INPs) in cirrus clouds due to the ubiquity of cirrus clouds and the uncertainties in their radiative forcing. This study expands upon previous works on low-temperature ice nucleation of SSA by investigating the effects of atmospheric aging of SSA and the ice-nucleating activity of newly formed secondary marine aerosols (SMAs) using an oxidation flow reactor. Polydisperse aerosol distributions were generated from a marine aerosol reference tank (MART) filled with 120 L of real or artificial seawater and were dried to very low relative humidity to crystallize the salt constituents of SSA prior to their subsequent freezing, which was measured using a continuous flow diffusion chamber (CFDC). Results show that for primary SSA (pSSA), as well as aged SSA and SMA (aSSA+SMA) at temperatures >220 K, homogeneous conditions (92 %–97 % relative humidity with respect to water – RHw) were required to freeze 1 % of the particles. However, below 220 K, heterogeneous nucleation occurs for both pSSA and aSSA+SMA at much lower RHw, where up to 1 % of the aerosol population freezes between 75 % and 80 % RHw. Similarities between freezing behaviors of the pSSA and aSSA+SMA at all temperatures suggest that the contributions of condensed organics onto the pSSA or alteration of functional groups in pSSA via atmospheric aging did not hinder the major heterogeneous ice nucleation process at these cirrus temperatures, which have previously been shown to be dominated by the crystalline salts. Occurrence of a 1 % frozen fraction of SMA, generated in the absence of primary SSA, was observed at or near water saturation below 220 K, suggesting it is not an effective INP at cirrus temperatures, similar to findings in the literature on other organic aerosols. Thus, any SMA coatings on the pSSA would only decrease the ice nucleation behavior of pSSA if the organic components were able to significantly delay water uptake of the inorganic salts, and apparently this was not the case. Results from this study demonstrate the ability of lofted primary sea spray particles to remain an effective ice nucleator at cirrus temperatures, even after atmospheric aging has occurred over a period of days in the marine boundary layer prior to lofting. We were not able to address aging processes under upper-tropospheric conditions. 
    more » « less
  5. The Arctic is rapidly warming and has transitioned to thinner sea ice which fractures, producing leads. Sea ice loss is expected to be increasing sea spray aerosol production in the High Arctic. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, characterized by varied salinity, microbial community, and organic composition. The concentrations, size distributions, single-particle composition, and ice-nucleating activity of the SSA experimentally-generated were measured and compared to the chemical and biological properties of the surface waters. A marine aerosol reference tank (MART) was deployed aboard the Swedish Icebreaker Oden to the high Arctic Ocean during August – September 2018 to study SSA generated from locally-collected surface water. Surface water salinity, chlorophyll-a, organic carbon, nitrogen, and microbial community composition (18s and 16s DNA-derived, flow cytometry of nano- and picoplankton) data are submitted. Experimental aerosol data submitted include type, size, mole ratio, Raman spectra, Raman type, and ice nucleating particles. High resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS) data for surface water and experimentally-generated aerosol dissolved organic matter are included . 
    more » « less