skip to main content


Title: Compositional Influence of Local and Long-Range Polarity in the Frustrated Pyrochlore System Bi 2−x RE xTi 2 O 7 ( RE = Y 3+ , Ho 3+ )
Structural distortions such as cation off-centering are frustrated in the pyrochlore structure due to the triangular arrangement of cations on the pyrochlore lattice. This geometric constraint inhibits a transition from a paraelectric to ferroelectric phase in majority of pyrochlore oxide materials. Few pyrochlore materials can overcome this frustration and exhibit polar crystal structures, and unraveling the origin of such leads to the understanding of polarity in complex materials. Herein we hypothesize that frustration on the pyrochlore lattice can be relieved through A -site doping with rare earth cations that do not possess stereochemically active lone pairs. To assess if frustration is relieved, we have analyzed cation off-centering in various Bi 2−x RE xTi 2 O 7 ( RE = Y 3+ , Ho 3+ ) pyrochlores through neutron and X-ray total scattering. Motivated by known distortions from the pyrochlore literature, we present our findings that most samples show local distortions similar to the β-cristobalite structure. We additionally comment on the complexity of factors that play a role in the structural behavior, including cation size, bond valence, electronic structure, and magnetoelectronic interactions. We posit that the addition of magnetic cations on the pyrochlore lattice may play a role in an extension of the real-space correlation length of electric dipoles in the Bi-Ho series, and offer considerations for driving long-range polarity on the pyrochlore lattice.  more » « less
Award ID(s):
1904980
NSF-PAR ID:
10329720
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations. 
    more » « less
  2. Na-ion conducting solid electrolytes can enable both the enhanced safety profile of all-solid-state-batteries and the transition to an earth-abundant charge-carrier for large-scale stationary storage. In this work, we developed new perovskite-structured Na-ion conductors from the analogous fast Li-ion conducting Li 3 x La 2/3− x TiO 3 (LLTO), testing strategies of chemo-mechanical and defect engineering. Na x La 2/3−1/3 x ZrO 3 (NLZ) and Na x La 1/3−1/3 x Ba 0.5 ZrO 3 (NLBZ) were prepared using a modified Pechini method with varying initial stoichiometries and sintering temperatures. With the substitution of larger framework cations Zr 4+ and Ba 2+ on B- and A-sites respectively, NLZ and NLBZ both had larger lattice parameters compared to LLTO, in order to accommodate and potentially enhance the transport of larger Na ions. Additionally, we sought to introduce Na vacancies through (a) sub-stoichiometric Na : La ratios, (b) Na loss during sintering, and (c) donor doping with Nb. AC impedance spectroscopy and DC polarization experiments were performed on both Na 0.5 La 0.5 ZrO 3 and Na 0.25 La 0.25 Ba 0.5 ZrO 3 in controlled gas environments (variable oxygen partial pressure, humidity) at elevated temperatures to quantify the contributions of various possible charge carriers (sodium ions, holes, electrons, oxygen ions, protons). Our results showed that the lattice-enlarged NLZ and NLBZ exhibited ∼19× (conventional sintering)/49× (spark plasma sintering) and ∼7× higher Na-ion conductivities, respectively, compared to unexpanded Na 0.42 La 0.525 TiO 3 . Moreover, the Na-ion conductivity of Na 0.5 La 0.5 ZrO 3 is comparable with that of NaNbO 3 , despite having half the carrier concentration. Additionally, more than 96% of the total conductivity in dry conditions was contributed by sodium ions for both compositions, with negligible electronic conductivity and little oxygen ion conductivity. We also identified factors that limited Na-ion transport: NLZ and NLBZ were both challenging to densify using conventional sintering without the loss of Na because of its volatility. With spark plasma sintering, higher density can be achieved. In addition, the NLZ perovskite phase appeared unable to accommodate significant Na deficiency, whereas NLBZ allowed some. Density functional theory calculations supported a thermodynamic limitation to creation of Na-deficient NLZ in favor of a pyrochlore-type phase. Humid environments generated different behavior: in Na 0.25 La 0.25 Ba 0.5 ZrO 3 , incorporated protons raised total conductivity, whereas in Na 0.5 La 0.5 ZrO 3 , they lowered total conductivity. Ultimately, this systematic approach revealed both effective approaches and limitations to achieving super-ionic Na-ion conductivity, which may eventually be overcome through alternative processing routes. 
    more » « less
  3. The use of 18-crown-6 (18-c-6) in place of 2.2.2-cryptand (crypt) in rare earth amide reduction reactions involving potassium has proven to be crucial in the synthesis of Ln( ii ) complexes and isolation of their CO reduction products. The faster speed of crystallization with 18-c-6 appears to be important. Previous studies have shown that reduction of the trivalent amide complexes Ln(NR 2 ) 3 (R = SiMe 3 ) with potassium in the presence of 2.2.2-cryptand (crypt) forms the divalent [K(crypt)][Ln II (NR 2 ) 3 ] complexes for Ln = Gd, Tb, Dy, and Tm. However, for Ho and Er, the [Ln(NR 2 ) 3 ] 1− anions were only isolable with [Rb(crypt)] 1+ counter-cations and isolation of the [Y II (NR 2 ) 3 ] 1− anion was not possible under any of these conditions. We now report that by changing the potassium chelator from crypt to 18-crown-6 (18-c-6), the [Ln(NR 2 ) 3 ] 1− anions can be isolated not only for Ln = Gd, Tb, Dy, and Tm, but also for Ho, Er, and Y. Specifically, these anions are isolated as salts of a 1 : 2 potassium : crown sandwich cation, [K(18-c-6) 2 ] 1+ , i.e. [K(18-c-6) 2 ][Ln(NR 2 ) 3 ]. The [K(18-c-6) 2 ] 1+ counter-cation was superior not only in the synthesis, but it also allowed the isolation of crystallographically-characterizable products from reactions of CO with the [Ln(NR 2 ) 3 ] 1− anions that were not obtainable from the [K(crypt)] 1+ analogs. Reaction of CO with [K(18-c-6) 2 ][Ln(NR 2 ) 3 ], generated in situ , yielded crystals of the ynediolate products, {[(R 2 N) 3 Ln] 2 (μ-OCCO)} 2− , which crystallized with counter-cations possessing 2 : 3 potassium : crown ratios, i.e. {[K 2 (18-c-6) 3 ]} 2+ , for Gd, Dy, Ho. In contrast, reaction of CO with a solution of isolated [K(18-c-6) 2 ][Gd(NR 2 ) 3 ], produced crystals of an enediolate complex isolated with a counter-cation with a 2 : 2 potassium : crown ratio namely [K(18-c-6)] 2 2+ in the complex [K(18-c-6)] 2 {[(R 2 N) 2 Gd 2 (μ-OCHCHO) 2 ]}. 
    more » « less
  4. Compounds that crystallize in the layered CaAl 2 Si 2 structural pattern have rapidly emerged as an exciting class of thermoelectric materials with attractive n- and p-type properties. More than 100 AM 2 X 2 compounds that form this structure type – characterized by anionic M 2 X 2 slabs sandwiched between layers of octahedrally coordinated A cations – provide numerous potential paths to chemically tune every aspect of thermoelectric transport. This review highlights the chemical diversity of this structure type, discusses the rules governing its formation and stability relative to competing AM 2 X 2 structures ( e.g. , ThCr 2 Si 2 and BaCu 2 S 2 ), and attempts to bring some of the most recently discovered compounds into the spotlight. The discussion of thermoelectric transport properties in AM 2 X 2 compounds focuses primarily on the intrinsic parameters that determine the potential for a high figure of merit: the band gap, effective mass, degeneracy, carrier relaxation time, and lattice thermal conductivity. We also discuss routes that have been used to successfully control the carrier concentration, including controlling the cation vacancy concentration, doping, and isoelectronic alloying (approaches that are highly interdependent). Finally, we discuss recent progress made towards n-type doping in this system, highlight opportunities for further improvements, as well as open questions that still remain. 
    more » « less
  5. The Zintl compound Eu 2 ZnSb 2 was recently shown to have a promising thermoelectric figure of merit, zT ∼ 1 at 823 K, due to its low lattice thermal conductivity and high electronic mobility. In the current study, we show that further increases to the electronic mobility and simultaneous reductions to the lattice thermal conductivity can be achieved by isovalent alloying with Bi on the Sb site in the Eu 2 ZnSb 2−x Bi x series ( x = 0, 0.25, 1, 2). Upon alloying with Bi, the effective mass decreases and the mobility linearly increases, showing no signs of reduction due to alloy scattering. Analysis of the pair distribution functions obtained from synchrotron X-ray diffraction revealed significant local structural distortions caused by the half-occupied Zn site in this structure type. It is all the more surprising, therefore, to find that Eu 2 ZnBi 2 possesses high electronic mobility (∼100 cm 2 V −1 s −1 ) comparable to that of AM 2 X 2 Zintl compounds. The enormous degree of disorder in this series gives rise to exceptionally low lattice thermal conductivity, which is further reduced by Bi substitution due to the decreased speed of sound. Increasing the Bi content was also found to decrease the band gap while increasing the carrier concentration by two orders of magnitude. Applying a single parabolic band model suggests that Bi-rich compositions of Eu 2 ZnSb 2−x Bi x have the potential for significantly improved zT ; however, further optimization is necessary through reduction of the carrier concentration to realize high zT . 
    more » « less