skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compositional Influence of Local and Long-Range Polarity in the Frustrated Pyrochlore System Bi 2−x RE xTi 2 O 7 ( RE = Y 3+ , Ho 3+ )
Structural distortions such as cation off-centering are frustrated in the pyrochlore structure due to the triangular arrangement of cations on the pyrochlore lattice. This geometric constraint inhibits a transition from a paraelectric to ferroelectric phase in majority of pyrochlore oxide materials. Few pyrochlore materials can overcome this frustration and exhibit polar crystal structures, and unraveling the origin of such leads to the understanding of polarity in complex materials. Herein we hypothesize that frustration on the pyrochlore lattice can be relieved through A -site doping with rare earth cations that do not possess stereochemically active lone pairs. To assess if frustration is relieved, we have analyzed cation off-centering in various Bi 2−x RE xTi 2 O 7 ( RE = Y 3+ , Ho 3+ ) pyrochlores through neutron and X-ray total scattering. Motivated by known distortions from the pyrochlore literature, we present our findings that most samples show local distortions similar to the β-cristobalite structure. We additionally comment on the complexity of factors that play a role in the structural behavior, including cation size, bond valence, electronic structure, and magnetoelectronic interactions. We posit that the addition of magnetic cations on the pyrochlore lattice may play a role in an extension of the real-space correlation length of electric dipoles in the Bi-Ho series, and offer considerations for driving long-range polarity on the pyrochlore lattice.  more » « less
Award ID(s):
1904980
PAR ID:
10329720
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations. 
    more » « less
  2. High-throughput combinatorial synthesis of Al1−xRExN (RE = Pr, Tb) thin films with 0 <x< 0.4 was performed to assess composition-phase-property relationships in an emerging materials family. 
    more » « less
  3. KBiNb 2 O 7 was prepared from RbBiNb 2 O 7 by a sequence of cation exchange reactions which first convert RbBiNb 2 O 7 to LiBiNb 2 O 7 , before KBiNb 2 O 7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb 2 O 7 adopts a polar, layered, perovskite structure (space group A 11 m ) in which the BiNb 2 O 7 layers are stacked in a (0, ½, z ) arrangement, with the K + cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi 3+ cations parallel to the y -axis. HAADF-STEM images reveal that KBiNb 2 O 7 exhibits frequent stacking faults which convert the (0, ½, z ) layer stacking to (½, 0, z ) stacking and vice versa , essentially switching the x - and y -axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb 2 O 7 it is estimated that each layer has approximately a 9% chance of being defective – a high level which is attributed to the lack of cooperative NbO 6 tilting in the material, which limits the lattice strain associated with each fault. 
    more » « less
  4. The Zintl compound Eu 2 ZnSb 2 was recently shown to have a promising thermoelectric figure of merit, zT ∼ 1 at 823 K, due to its low lattice thermal conductivity and high electronic mobility. In the current study, we show that further increases to the electronic mobility and simultaneous reductions to the lattice thermal conductivity can be achieved by isovalent alloying with Bi on the Sb site in the Eu 2 ZnSb 2−x Bi x series ( x = 0, 0.25, 1, 2). Upon alloying with Bi, the effective mass decreases and the mobility linearly increases, showing no signs of reduction due to alloy scattering. Analysis of the pair distribution functions obtained from synchrotron X-ray diffraction revealed significant local structural distortions caused by the half-occupied Zn site in this structure type. It is all the more surprising, therefore, to find that Eu 2 ZnBi 2 possesses high electronic mobility (∼100 cm 2 V −1 s −1 ) comparable to that of AM 2 X 2 Zintl compounds. The enormous degree of disorder in this series gives rise to exceptionally low lattice thermal conductivity, which is further reduced by Bi substitution due to the decreased speed of sound. Increasing the Bi content was also found to decrease the band gap while increasing the carrier concentration by two orders of magnitude. Applying a single parabolic band model suggests that Bi-rich compositions of Eu 2 ZnSb 2−x Bi x have the potential for significantly improved zT ; however, further optimization is necessary through reduction of the carrier concentration to realize high zT . 
    more » « less
  5. Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system. 
    more » « less