skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the evolution of the observed mass-to-length relationship for star-forming filaments
ABSTRACT The interstellar medium is threaded by a hierarchy of filaments from large scales (∼100 pc) to small scales (∼0.1 pc). The masses and lengths of these nested structures may reveal important constraints for cloud formation and evolution, but it is difficult to investigate from an evolutionary perspective using single observations. In this work, we extract simulated molecular clouds from the ‘Cloud Factory’ galactic-scale ISM suite in combination with 3D Monte Carlo radiative transfer code polaris to investigate how filamentary structure evolves over time. We produce synthetic dust continuum observations in three regions with a series of snapshots and use the filfinder algorithm to identify filaments in the dust derived column density maps. When the synthetic filaments mass and length are plotted on an mass–length (M–L) plot, we see a scaling relation of L ∝ M0.45 similar to that seen in observations, and find that the filaments are thermally supercritical. Projection effects systematically affect the masses and lengths measured for the filaments, and are particularly severe in crowded regions. In the filament M–L diagram we identify three main evolutionary mechanisms: accretion, segmentation, and dispersal. In particular we find that the filaments typically evolve from smaller to larger masses in the observational M–L plane, indicating the dominant role of accretion in filament evolution. Moreover, we find a potential correlation between line mass and filament growth rate. Once filaments are actively star forming they then segment into smaller sections, or are dispersed by internal or external forces.  more » « less
Award ID(s):
2106607
PAR ID:
10491634
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 6370-6387
Size(s):
p. 6370-6387
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In typical environments of star-forming clouds, converging supersonic turbulence generates shock-compressed regions, and can create strongly magnetized sheet-like layers. Numerical magnetohydrodynamic simulations show that within these post-shock layers, dense filaments and embedded self-gravitating cores form via gathering material along the magnetic field lines. As a result of the preferred-direction mass collection, a velocity gradient perpendicular to the filament major axis is a common feature seen in simulations. We show that this prediction is in good agreement with recent observations from the CARMA Large Area Star Formation Survey (CLASSy), from which we identified several filaments with prominent velocity gradients perpendicular to their major axes. Highlighting a filament from the north-west part of Serpens South, we provide both qualitative and quantitative comparisons between simulation results and observational data. In particular, we show that the dimensionless ratio Cv ≡ Δvh2/(GM/L), where Δvh is half of the observed perpendicular velocity difference across a filament, and M/L is the filament’s mass per unit length, can distinguish between filaments formed purely due to turbulent compression and those formed due to gravity-induced accretion. We conclude that the perpendicular velocity gradient observed in the Serpens South north-west filament can be caused by gravity-induced anisotropic accretion of material from a flattened layer. Using synthetic observations of our simulated filaments, we also propose that a density-selection effect may explain observed subfilaments (one filament breaking into two components in velocity space) as reported in recent observations. 
    more » « less
  2. Abstract We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent impacts on the resulting core properties for d < 300 pc and 500 pc, respectively, which dominate over evolutionary differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range, than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores Legacy Survey on the Large Millimeter Telescope Alfonso Serrano. 
    more » « less
  3. Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. 
    more » « less
  4. ABSTRACT We characterize the kinematic and magnetic properties of H i filaments located in a high Galactic latitude region (165° < α < 195° and 12° < δ < 24°). We extract three-dimensional filamentary structures using fil3d from the Galactic Arecibo L-Band Feed Array H i (GALFA-H i) survey 21-cm emission data. Our algorithm identifies coherent emission structures in neighbouring velocity channels. Based on the mean velocity, we identify a population of local and intermediate velocity cloud (IVC) filaments. We find the orientations of the local (but not the IVC) H i filaments are aligned with the magnetic field orientations inferred from Planck 353 GHz polarized dust emission. We analyse position–velocity diagrams of the velocity-coherent filaments, and find that only 15 per cent of filaments demonstrate significant major-axis velocity gradients with a median magnitude of 0.5 km s−1 pc−1, assuming a fiducial filament distance of 100 pc. We conclude that the typical diffuse H i filament does not exhibit a simple velocity gradient. The reported filament properties constrain future theoretical models of filament formation. 
    more » « less
  5. Abstract Polarization observations of the Milky Way and many other spiral galaxies have found a close correspondence between the orientation of spiral arms and magnetic field lines on scales of hundreds of parsecs. This paper presents polarization measurements at 214μm toward 10 filamentary candidate “bones” in the Milky Way using the High-resolution Airborne Wide-band Camera on the Stratospheric Observatory for Infrared Astronomy. These data were taken as part of the Filaments Extremely Long and Dark: A Magnetic Polarization Survey and represent the first study to resolve the magnetic field in spiral arms at parsec scales. We describe the complex yet well-defined polarization structure of all 10 candidate bones, and we find a mean difference and standard deviation of −74° ± 32° between their filament axis and the plane-of-sky magnetic field, closer to a field perpendicular to their length rather than parallel. By contrast, the 850μm polarization data from Planck on scales greater than 10 pc show a nearly parallel mean difference of 3° ± 21°. These findings provide further evidence that magnetic fields can change orientation at the scale of dense molecular clouds, even along spiral arms. Finally, we use a power law to fit the dust polarization fraction as a function of total intensity on a cloud-by-cloud basis and find indices between −0.6 and −0.9, with a mean and standard deviation of −0.7 ± 0.1. The polarization, dust temperature, and column density data presented in this work are publicly available online. 
    more » « less