skip to main content

This content will become publicly available on January 1, 2023

Title: Relation representations in analogical reasoning and recognition memory
Many computational models of reasoning rely on explicit relation representations to account for human cognitive capacities such as analogical reasoning. Relational luring, a phenomenon observed in recognition memory, has been interpreted as evidence that explicit relation representations also impact episodic memory; however, this assumption has not been rigorously assessed by computational modeling. We implemented an established model of recognition memory, the Generalized Context Model (GCM), as a framework for simulating human performance on an old/new recognition task that elicits relational luring. Within this basic theoretical framework, we compared representations based on explicit relations, lexical semantics (i.e., individual word meanings), and a combination of the two. We compared the same alternative representations as predictors of accuracy in solving explicit verbal analogies. In accord with previous work, we found that explicit relation representations are necessary for modeling analogical reasoning. In contrast, preliminary simulations incorporating model parameters optimized to fit human data reproduce relational luring using any of the alternative representations, including one based on non-relational lexical semantics. Further work on model comparisons is needed to examine the contributions of lexical semantics and relations on the luring effect in recognition memory.
Authors:
; ; ; ; ; ;
Award ID(s):
2022369
Publication Date:
NSF-PAR ID:
10329853
Journal Name:
Proceedings of the 44th Annual Meeting of the Cognitive Science Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Analogy problems involving multiple ordered relations of the same type create mapping ambiguity, requiring some mechanism for relational integration to achieve mapping accuracy. We address the question of whether the integration of ordered relations depends on their logical form alone, or on semantic representations that differ across relation types. We developed a triplet mapping task that provides a basic paradigm to investigate analogical reasoning with simple relational structures. Experimental results showed that mapping performance differed across orderings based on category, linear order, and causal relations, providing evidence that each transitive relation has its own semantic representation. Hence, human analogical mappingmore »of ordered relations does not depend solely on their formal property of transitivity. Instead, human ability to solve mapping problems by integrating relations relies on the semantics of relation representations. We also compared human performance to the performance of several vector-based computational models of analogy. These models performed above chance but fell short of human performance for some relations, highlighting the need for further model development.« less
  2. By middle childhood, humans are able to learn abstract semantic relations (e.g., antonym, synonym, category membership) and use them to reason by analogy. A deep theoretical challenge is to show how such abstract relations can arise from nonrelational inputs, thereby providing key elements of a protosymbolic representation system. We have developed a computational model that exploits the potential synergy between deep learning from “big data” (to create semantic features for individual words) and supervised learning from “small data” (to create representations of semantic relations between words). Given as inputs labeled pairs of lexical representations extracted by deep learning, the modelmore »creates augmented representations by remapping features according to the rank of differences between values for the two words in each pair. These augmented representations aid in coping with the feature alignment problem (e.g., matching those features that make “love-hate” an antonym with the different features that make “rich-poor” an antonym). The model extracts weight distributions that are used to estimate the probabilities that new word pairs instantiate each relation, capturing the pattern of human typicality judgments for a broad range of abstract semantic relations. A measure of relational similarity can be derived and used to solve simple verbal analogies with human-level accuracy. Because each acquired relation has a modular representation, basic symbolic operations are enabled (notably, the converse of any learned relation can be formed without additional training). Abstract semantic relations can be induced by bootstrapping from nonrelational inputs, thereby enabling relational generalization and analogical reasoning.

    « less
  3. Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks formore »individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping.« less
  4. Relational integration is required when multiple explicit representations of relations between entities must be jointly considered to make inferences. We provide an overview of the neural substrate of relational integration in humans and the processes that support it, focusing on work on analogical and deductive reasoning. In addition to neural evidence, we consider behavioral and computational work that has informed neural investigations of the representations of individual relations and of relational integration. In very general terms, evidence from neuroimaging, neuropsychological, and neuromodulatory studies points to a small set of regions (generally left lateralized) that appear to constitute key substrates formore »component processes of relational integration. These include posterior parietal cortex, implicated in the representation of first-order relations (e.g., A:B); rostrolateral pFC, apparently central in integrating first-order relations so as to generate and/or evaluate higher-order relations (e.g., A:B::C:D); dorsolateral pFC, involved in maintaining relations in working memory; and ventrolateral pFC, implicated in interference control (e.g., inhibiting salient information that competes with relevant relations). Recent work has begun to link computational models of relational representation and reasoning with patterns of neural activity within these brain areas.« less
  5. Fitch, T. ; Lamm, C. ; Leder, H. ; Teßmar-Raible, K. (Ed.)
    Is analogical reasoning a task that must be learned to solve from scratch by applying deep learning models to massive numbers of reasoning problems? Or are analogies solved by computing similarities between structured representations of analogs? We address this question by comparing human performance on visual analogies created using images of familiar three-dimensional objects (cars and their subregions) with the performance of alternative computational models. Human reasoners achieved above-chance accuracy for all problem types, but made more errors in several conditions (e.g., when relevant subregions were occluded). We compared human performance to that of two recent deep learning models (Siamesemore »Network and Relation Network) directly trained to solve these analogy problems, as well as to that of a compositional model that assesses relational similarity between part-based representations. The compositional model based on part representations, but not the deep learning models, generated qualitative performance similar to that of human reasoners.« less