skip to main content

This content will become publicly available on January 1, 2023

Title: From semantic vectors to analogical mapping
Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks for individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping.
Authors:
; ;
Award ID(s):
1827374
Publication Date:
NSF-PAR ID:
10337289
Journal Name:
Current directions in psychological science
ISSN:
1467-8721
Sponsoring Org:
National Science Foundation
More Like this
  1. By middle childhood, humans are able to learn abstract semantic relations (e.g., antonym, synonym, category membership) and use them to reason by analogy. A deep theoretical challenge is to show how such abstract relations can arise from nonrelational inputs, thereby providing key elements of a protosymbolic representation system. We have developed a computational model that exploits the potential synergy between deep learning from “big data” (to create semantic features for individual words) and supervised learning from “small data” (to create representations of semantic relations between words). Given as inputs labeled pairs of lexical representations extracted by deep learning, the modelmore »creates augmented representations by remapping features according to the rank of differences between values for the two words in each pair. These augmented representations aid in coping with the feature alignment problem (e.g., matching those features that make “love-hate” an antonym with the different features that make “rich-poor” an antonym). The model extracts weight distributions that are used to estimate the probabilities that new word pairs instantiate each relation, capturing the pattern of human typicality judgments for a broad range of abstract semantic relations. A measure of relational similarity can be derived and used to solve simple verbal analogies with human-level accuracy. Because each acquired relation has a modular representation, basic symbolic operations are enabled (notably, the converse of any learned relation can be formed without additional training). Abstract semantic relations can be induced by bootstrapping from nonrelational inputs, thereby enabling relational generalization and analogical reasoning.

    « less
  2. We see the external world as consisting not only of objects and their parts, but also of relations that hold between them. Visual analogy, which depends on similarities between relations, provides a clear example of how perception supports reasoning. Here we report an experiment in which we quantitatively measured the human ability to find analogical mappings between parts of different objects, where the objects to be compared were drawn either from the same category (e.g., images of two mammals, such as a dog and a horse), or from two dissimilar categories (e.g., a chair image mapped to a cat image).more »Humans showed systematic mapping patterns, but with greater variability in mapping responses when objects were drawn from dissimilar categories. We simulated the human response of analogical mapping using a computational model of mapping between 3D objects, visiPAM (visual Probabilistic Analogical Mapping). VisiPAM takes point-cloud representations of two 3D objects as inputs, and outputs the mapping between analogous parts of the two objects. VisiPAM consists of a visual module that constructs structural representations of individual objects, and a reasoning module that identifies a probabilistic mapping between parts of the two 3D objects. Model simulations not only capture the qualitative pattern of human mapping performance cross conditions, but also approach human-level reliability in solving visual analogy problems.« less
  3. We report a first effort to model the solution of meaningful four-term visual analogies, by combining a machine-vision model (ResNet50-A) that can classify pixel-level images into object categories, with a cognitive model (BART) that takes semantic representations of words as input and identifies semantic relations instantiated by a word pair. Each model achieves above-chance performance in selecting the best analogical option from a set of four. However, combining the visual and the semantic models increases analogical performance above the level achieved by either model alone. The contribution of vision to reasoning thus may extend beyond simply generating verbal representations frommore »images. These findings provide a proof of concept that a comprehensive model can solve semantically-rich analogies from pixel-level inputs.« less
  4. Analogy problems involving multiple ordered relations of the same type create mapping ambiguity, requiring some mechanism for relational integration to achieve mapping accuracy. We address the question of whether the integration of ordered relations depends on their logical form alone, or on semantic representations that differ across relation types. We developed a triplet mapping task that provides a basic paradigm to investigate analogical reasoning with simple relational structures. Experimental results showed that mapping performance differed across orderings based on category, linear order, and causal relations, providing evidence that each transitive relation has its own semantic representation. Hence, human analogical mappingmore »of ordered relations does not depend solely on their formal property of transitivity. Instead, human ability to solve mapping problems by integrating relations relies on the semantics of relation representations. We also compared human performance to the performance of several vector-based computational models of analogy. These models performed above chance but fell short of human performance for some relations, highlighting the need for further model development.« less
  5. Many computational models of reasoning rely on explicit relation representations to account for human cognitive capacities such as analogical reasoning. Relational luring, a phenomenon observed in recognition memory, has been interpreted as evidence that explicit relation representations also impact episodic memory; however, this assumption has not been rigorously assessed by computational modeling. We implemented an established model of recognition memory, the Generalized Context Model (GCM), as a framework for simulating human performance on an old/new recognition task that elicits relational luring. Within this basic theoretical framework, we compared representations based on explicit relations, lexical semantics (i.e., individual word meanings), andmore »a combination of the two. We compared the same alternative representations as predictors of accuracy in solving explicit verbal analogies. In accord with previous work, we found that explicit relation representations are necessary for modeling analogical reasoning. In contrast, preliminary simulations incorporating model parameters optimized to fit human data reproduce relational luring using any of the alternative representations, including one based on non-relational lexical semantics. Further work on model comparisons is needed to examine the contributions of lexical semantics and relations on the luring effect in recognition memory.« less