skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Controlling flows of an intra-droplet active fluid across droplet interface
Fluid dynamics of conventional passive fluid are known to be affected by boundary condition. For example, flow rates in a pipe depend on slipperiness of pipe surface. Similarly, active fluid, which consumes fuels locally to flow spontaneously, was reported to self-flow along a meter-long tubing with the flow rate depending on tubing geometry. However, how boundary condition influences fluid dynamics in an active fluid system remains poorly understood. Here, we investigated how a fluid boundary influenced self-organization of confined active fluid by establishing a 3D COMSOL-based nemato-hydrodynamic simulation platform where active fluid was confined in a compressed cylindrical water-in-oil droplet. Since the droplet interface was fluid, the fluid dynamics within and outside the droplet were coupled. Our simulation demonstrated that flow behaviors of intra-droplet active fluid were influenced by the amount of oil that surrounded the droplet: Without altering the droplet geometry, expanding the volume of oil could induce a circulatory flow within the droplet, which resembled our experimental observation. Our work suggested the feasibility of controlling the fluid dynamics of a confined active fluid system across a fluid interface.  more » « less
Award ID(s):
2045621
PAR ID:
10329899
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Bulletin of the American Physical Society
ISSN:
0003-0503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active matter consumes local fuels to self-propel. When confined in a closed circular boundary, they can self-organize into a circulatory flow. Such coherence originates from the interactions between the active matter and boundaries, and boundary conditions play an important role on self-organization of active fluid. Herein, we probed how fluid boundaries influenced the self-organization of active fluid. The fluid boundaries were created by confining the active fluid in a compressed water-in-oil droplet. Due to surface tension, the droplet shaped into a cylinder-like geometry. Since water and oil were both fluids, their interface was fluid. We systematically probed how droplet shapes and the amount of oil surrounding the droplet influenced the development of circulation. We found that the formation of circulatory flows depended on the thickness of the oil layer surrounding the droplet, implying that the fluid dynamics between the active fluid within the droplet and the oil outside the droplet were coupled. We used a 3D COMSOL-based simulation successfully reproduced such oil-layer dependence. Finally, we developed two milli-fluidic devices to deform the droplet and alter the oil layer thickness manually to trigger and suppress the intra-droplet circulatory flow in real time. 
    more » « less
  2. Abstract Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter–scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter–scale flow coupling across the interface between the active fluid and the oil. 
    more » « less
  3. Actively driven, bundled microtubule networks, powered by molecular motors have become a useful framework in which to study the dynamics of energy-driven defects, but achieving control of defect motions is still a challenging problem. In this paper, we present a method to confine active nematic fluid using wetting to curve a layer of oil over circular pillars. This geometry, in which submersed pillars impinge on an oil-water interface, creates a two-tier continuous active layer in which the material is confined above, and surrounds the pillars. Active flows above the pillars are influenced by the circular geometry and exhibit dynamics similar to those observed for active material confined by hard boundaries, e.g., inside circular wells. The thin oil layer beneath the active material is even thinner in the region above the pillars than outside their boundary, consequently producing an area of higher effective friction. Within the pillar region, active length scales and velocities are decreased, while defect densities increase relative to outside the pillar boundary. This new way to confine active flows opens further opportunities to control and organize topological defects and study their behavior in active systems. 
    more » « less
  4. Boundary conditions influence the outcome of fluid dynamics in conventional passive fluid systems. Such an influence also extends to active fluid systems where fluid can flow by itself without an external driving force. For example, an active fluid that is confined in a thin cylinder can self-organize into a circulation along the central axis of the cylinder but thinning the cylinder to a disk-like geometry suppresses the formation of circulation. These phenomena demonstrated the role of confinement geometry on flow patterns of active fluid. Here, we demonstrate two flow patterns induced by confinement. First, we will show that active fluid can convect within a trapezoidal confinement. Such convection was in a temperature-uniform system, in contrast to Rayleigh-Bénard convection which is induced by a temperature gradient. This result suggested the feasibility of developing convection in a temperature-homogeneous system. Second, we demonstrate a confinement-induced stationary vortex near a corner of confinement whose corner angle is below a critical value. This is similar to conventional Moffatt eddies, except the fluid is internally driven. Our work paves the path to controlling self-organization of active fluid using confinement. 
    more » « less
  5. Abstract Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement. 
    more » « less